首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

2.
Dissipation of pendimethalin in the soil of field peas (Pisum sativum L.) at 0 to 110 days, and terminal residues in green and mature pea were studied under field conditions. Pendimethalin was applied as pre-emergence herbicide at 750, to 185 g a.i. ha?1 in winter, in field peas. Dissipation of pendimethalin in the soil at 0 to 110 days followed first-order kinetics showing a half-life of 19.83 days averaged over all doses. Low pendimethalin residues were found in mature pea grain (0.004, 0.003, <0.001 μg g?1), and straw (0.007, 0.002, <0.001 μg g?1) at 750, 350 and 185 g a.i. ha?1 treatments, respectively. The study indicated that residues of pendimethalin in green and mature pea were within the prescribed MRL limits.  相似文献   

3.
We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha?1 on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.  相似文献   

4.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

5.
Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil–plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMBC), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02–0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMBC content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.  相似文献   

6.
Metribuzin, a triazine herbicide, is poorly sorbed in the soils, therefore leaches to lower soil profile. Fly ash amendment, which enhanced metribuzin sorption in soils, may play a significant role in reducing the downward mobility of herbicide. Therefore, the present study reports the effect of Inderprastha fly ash amendment on metribuzin leaching in three soil types. Fly ash was amended at 1, 2 and 5% levels in the upper 15 cm of 30 cm long packed soil columns. Results suggested a significant reduction in the leaching losses of metribuzin in fly ash-amended columns of all the three soil types and effect increased with increase in the level of fly ash. Even after percolating water equivalent to 362 mm rainfall no metribuzin was recovered in the leachate of 5% fly ash-amended columns. Fly ash application affected both metribuzin breakthrough time and its maximum concentration in the leachate. Further, it resulted in greater retention of metribuzin in the application zone and better effect was observed in the organic carbon poor soils.  相似文献   

7.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

8.
The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.  相似文献   

9.
10.
The objective of this research was to investigate the effect of wheat and rice biochars on pyrazosulfuron-ethyl sorption in a sandy loam soil. Pyrazosulfuron-ethyl was poorly sorbed in the soil (3.5–8.6%) but biochar amendment increased the herbicide adsorption, and the effect varied with the nature of the feedstock and pyrolysis temperature. Biochars prepared at 600°C were more effective in adsorbing pyrazosulfuron-ethyl than biochars prepared at 400°C. Rice biochars were better than wheat biochars, and higher herbicide adsorption was attributed to the biochar surface area/porosity. The Freundlich constant 1/n suggested nonlinear isotherms, and nonlinearlity increased with increase in the level of biochar amendment. Desorption results suggested sorption of pyrazosulfuron-ethyl was partially irreversible, and the irreversibility increased with increase in the level of biochar. Both sorption and desorption of pyrazosulfuron-ethyl correlated well with the content of biochars. The free energy change (ΔG) indicated that the pyrazosulfuron-ethyl sorption process was exothermic, spontaneous and physical in nature. Persistence studies indicated that biochar (0.5%) amendment did not have significant effect on herbicide degradation, and its half-life values in the control, 0.5% WBC600- and RBC600-amended rice planted soils were 7, 8.6, and 10.4 days, respectively.  相似文献   

11.
Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.  相似文献   

12.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

13.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40°C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K d ) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   

14.
Substantive addition of antibiotic-contaminated manure to agricultural soil may lead to “persistent” residues of antibiotics and may affect soil health. Therefore, this study examines the effects of repeated manure treatments containing sulfadiazine (SDZ) and chlortetracycline (CTC) residues, both individually and combined, on the functional diversity and structure of soil microbial communities in the soils under laboratory conditions. The average well color development (AWCD), Simpson diversity index (1/D, dominant populations), Shannon-Wiener diversity index (H′, richness), and McIntosh diversity index (U, evenness) in the antibiotics-treated soils decreased in the first 60-day treatment and then gradually recovered or even exceeded the initial level in the unamended soils with increasing treatment frequency. A total of 11 specific bands in temperature gradient gel electrophoresis (TGGE) profiles were observed and sequence analyzed for five repeated treatments, and most of them belonged to the phyla Firmicutes, Actinobacteria, and Proteobacteria. These results indicate that repeated treatments of manure containing SDZ and CTC residues can alter soil microbial community structure, although they have a temporary suppression effect on soil microbial functional diversity.  相似文献   

15.
Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments.  相似文献   

16.
Organic matter amendments have been proposed as a means to enhance soil carbon stocks on degraded soils, particularly under arid climate. Soil organic carbon (SOC) plays a critical role in terrestrial carbon cycling and is central to preserving soil quality. The effects of biowaste compost (BWC) on soil carbon storage were investigated. In addition, changes in soil organic matter (SOM) and even soil organic carbon (SOC) in BWC-amended soils following different applications were studied. The added BWC quantities were as followed: BWC/soil (weight/weight (w/w) respectively: 1/8, 1/4, and 1/2). The different BWC-amended soils were assessed during 180 days under arid ambient conditions and in comparison with control soil. Results showed a significant increase in SOM and SOC with relation to BWC quantities applied. This increase was relatively clear up to 120 days, after which decrease in SOM and SOC levels were observed. Furthermore, results showed improved microbiological activities of the amended soils in comparison with the control soil. This was reflected by the increase of the amended soils’ respirometric activities as cumulative carbon dioxide carbon (C-CO2) as function of incubation time and also in terms of specific respiration expressed as C-CO2/SOC ratios.

Implications: Mediterranean soils under arid climate such as Tunisian soils are poor in organic matter content. Biowastes are potential source for soil fertilization. Composting process is the best method for the stabilization of organic matter of diverse origins. The biowaste compost amendment improves the soil organic carbon storage and enhances the soil microbial activity.  相似文献   


17.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

18.
Abstract

Effects of the herbicide metsulfuron‐methyl on soil microorganisms and their activities in two soils were evaluated under laboratory conditions. Measurements included their populations, soil respiration, and microbial biomass. In the clay soil, bacterial populations decreased with increasing concentration of metsulfuron‐methyl during the first 9 days of incubation but exceeded that of the control soil from day 27 onward. In the sandy loam soil, the herbicide reduced bacterial populations during the first 3 days after application, but these increased to the level of untreated controls after 9 days’ incubation. Fungal populations in both soils increased with increasing metsulfuron‐methyl concentrations, especially in the sandy loam soil. CO2 evolution was stimulated in both soils in the presence of the herbicide initially, but decreased during days 3 to 9 of the incubation period before increasing again afterward. The presence of metsulfuron‐methyl in the soil increased microbial biomass, except in sandy loam soil at the first day of incubation.  相似文献   

19.

Organic amendments are sometimes applied to agricultural soils to improve the physical, chemical, and microbiological properties of the soils. The organic fractions in these soil amendments also influence metal reaction, particularly the adsorption and desorption of metals, which, in turn, determine the bioavailability of the metals and hence their phytotoxicities. In this study, a Quincy fine sandy (mixed, mesic, Xeric Torripsamments) soil was treated with 0 to 160 g kg?1 rates of either manure, sewage sludge (SS), or incinerated sewage sludge (ISS) and equilibrated in a greenhouse at near field capacity moisture content for 100 days. Following the incubation period, the soil was dried and adsorption of copper (Cu) was evaluated in a batch equilibration study at either 0, 100, 200, or 400 mg L?1 Cu concentrations in a 0.01M CaCl2 solution. The desorption of adsorbed Cu was evaluated by three successive elutions in 0.01M CaCl2. Copper adsorption increased with an increase in manure rates. At the highest rate of manure addition (160 g kg?1 soil), Cu adsorption was two-fold greater than that by the unamended soil at all rates of Cu additions. With increasing rates of Cu additions, the adsorption of Cu decreased from 99.4 to 77.6% of Cu applied to the 160 g kg?1 manure amended soil. The desorption of Cu decreased with an increase in rate of manure amendment. Effects of sewage sludge amendments on Cu adsorption were somewhat similar to those as described for manure additions. Likewise, the desorption of Cu was the least at the high rate of SS addition (160 g kg?1), although at the lower rates there was not a clear indication of the rate effects. In contrast to the above two amendments, the ISS amendment had the least effect on Cu adsorption. At the highest rate of ISS amendment, the Cu adsorption was roughly 50% of that at the similar rate of either manure or SS amendments, across all Cu rates.  相似文献   

20.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号