首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

2.
Abstract

The persistence of metsulfuron‐methyl in sandy loam and clay soil incubated at different temperatures and moistures contents was investigated under laboratory conditions using longbean (Vigna sesquipedalis L.) as bioassay species. A significant degradation of metsulfuron‐methyl was observed in non‐autoclaved soil rather than the autoclaved soil sample. At higher temperature, the degradation rate in non‐autoclaved soil improved with increasing soil moisture content. In non‐autoclaved sandy loam and clay soil, the half‐life was reduced from 9.0 to 5.7 and from 11.2 to 4.6 days, respectively when moisture level of sandy loam increased from 20 to 80% field capacity at 35°C. In the autoclaved soil, herbicide residue seems to have been broken down by non‐biological process. The rate of dissipation was slightly increased after the second application of the herbicide to non‐autoclaved soils but not in autoclaved soil, indicating the importance of microorganisms in the breakdown process.  相似文献   

3.
BAM (2,6-dichlorobenzamide) is a metabolite of pesticide dichlobenil and a common groundwater contaminant. Dichlobenil and BAM half-lives were determined in five Finnish subsurface deposits and in topsoil. Aerobic and anaerobic conditions with sterilized controls were included in this 1.4-year incubation experiment. In subsurface deposits, dichlobenil half-life varied from 157 days to no degradation and that of BAM from 314 days to no degradation. Microbes and oxygen enhanced dichlobenil and BAM dissipation rates in some deposits. However, dichlobenil and BAM concentrations were most significantly affected by deposit characteristics, especially carbon and nitrogen amounts. Also low pH, cadmium, iron, zinc, manganese and lead correlated with low dichlobenil and/or BAM concentrations. In mineral topsoil, dissipation was faster with half-lives of 41–54 days for dichlobenil, and 182–261 days for BAM. Dichlobenil was depleted completely in surface soil, but BAM was not dissipated below 55–81 % of the initial concentration. Generally, dichlobenil and BAM dissipation in samples from the northern boreal region was similar to that reported for the temperate region. BAM was persistent in topsoil and subsurface deposits, indicating long-term persistence problems in groundwater also within the northern boreal region.  相似文献   

4.
Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.  相似文献   

5.
The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.  相似文献   

6.
Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe0, Fe/Ni, Fe3O4, Fe3???x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe0 and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe0 and Fe/Ni (18–19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250–500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings may have important practical implications to promote successively reduction and oxidation reactions in soils and understand the impact of soil properties on remediation performance.  相似文献   

7.
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ?=?365 nm) whereas they became 2.63 h when exposed to visible light (λ?>?400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.  相似文献   

8.
Biodegradability of a polyacrylate superabsorbent in agricultural soil   总被引:1,自引:0,他引:1  
Superabsorbent polymers (SAP) are used, inter alia, as soil amendment to increase the water holding capacity of soils. Biodegradability of soil conditioners has become a desired key characteristic to protect soil and groundwater resources. The present study characterized the biodegradability of one acrylate based SAP in four agricultural soils and at three temperatures. Mineralisation was measured as the 13CO2 efflux from 13C-labelled SAP in soil incubations. The SAP was either single-labelled in the carboxyl C-atom or triple-labelled including additionally the two C-atoms interlinked in the SAP backbone. The dual labelling allowed estimating the degradation of the polyacrylate main chain. The 13CO2 efflux from samples was measured using an automated system including wavelength-scanned cavity ring-down spectroscopy. Based on single-labelled SAP, the mean degradation after 24 weeks varied between 0.45 % in loamy sand and 0.82 % in loam. However, the differences between degradation rates in different soils were not significant due to a large intra-replicate variability. Similarly, mean degradation did not differ significantly between effective temperature regimes of 20° and 30 °C after 12 weeks. Results from the triple-labelled SAP were lower as compared to their single-labelled variant. Detailed results suggest that the polyacrylate main chain degraded in the soils, if at all, at rates of 0.12–0.24 % per 6 months.  相似文献   

9.
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30 %). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93 %), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77 %) that is preventing biodegradation of degradable part of copolymers.  相似文献   

10.
Abstract

The present work deals with photocatalytic degradation of an organophosphorus pesticide, phosalone, in water in the presence of TiO2 particles under UV light illumination (1000 W). The influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time, stirring rate, and distance from UV source, on the photodegradation efficiency of phosalone was investigated. The degradation rate of phosalone was not high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. The half-life (DT50) of a 20 ppm aqueous solution of phosalone was 15 min in optimized conditions. The plot of lnC (phosalone) vs. time was linear, suggesting first order reaction (K = 0.0532 min?1). The half-life time of photomineralization in the concentration range of 7.5–20 ppm was 13.02 min. The efficiency of the method was also determined by measuring the reduction of Chemical Oxygen Demand (COD). During the mineralization under optimized conditions, COD decreased by more than 45% at irradiation time of 15 min. The photodegradation of phosalone was enhanced by addition of proper amount of hydrogen peroxide (150 ppm).  相似文献   

11.
We quantified the contents of four toxic metals in cosmetic products that are commercially available in Jordan; 112 cosmetics, representing 10 product types, were tested in triplicate after acid digestion using inductively coupled plasma optical emission spectrometry and a mercury analyzer. Ni was most abundant, detected in 104/112 (92.8%) products (average, 2.32 ppm; and median, 1.47 ppm); 66/112 (59%) contained >1 ppm and 13/112 (11.6%), >5 ppm Ni. Cd was second-most abundant, detected in 86/112 (76.7%) products (mean, 1.71 ppm; range from< detection limit [DL] to 18.07 ppm); 16 products (14.3%) exceeded the 3 ppm suggested limit. Pb was detected in 82/112 (73.2%) products (mean, 7.8 ppm; range, < detection limit to 190.43 ppm); 20/112 (17.8%) contained more than the suggested 10 ppm limit. Hg was least-frequently detected, present in 29/112 (25.9%) and at >3 ppm in 15/112 (13.4%) products. The highest content of Hg was observed in skin lightening creams (mean concentration, 1,008 ppm). Hg was detected in 20 (62.5%) of the 32 skin lightening creams tested, of which 11/32 (34.4%) contained > 3 ppm Hg. Of the 112 cosmetics tested, 17 (15.1%) products contained Ni, Pb, Cd, and Hg; 19/112 (16.9%) contained Cd, Pb, and Hg –no product exceeded the maximum acceptable limits for all three elements, and 9/112 (8%) products exceed the maximum recommended levels for at least two elements (Hg, Cd, and Pb).  相似文献   

12.
The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg?1 soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K+ while it increased shoot Mg2+ and had no impact on shoot Ca2+ concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb2+-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil.  相似文献   

13.
Mineralization studies of natural steroid hormones (e.g., 17β-estradiol, E2) are performed in environmental incubators, usually under a constant temperature such as 20°C. In this paper, we present a microcosm protocol that quantified the mineralization of E2 in soils under field temperatures. The nine agricultural soils tested had a wide range of soil organic carbon (1.1 to 5.2%) and clay (9 to 57%) contents. The calculated time over which half of the applied E2 was mineralized (E2-½) ranged from 299 to 910 d, and total E2 mineralization at 48 d (E2-TOT48) ranged from 4 to 13%. In subsequent laboratory incubations, the same soils were incubated under a constant temperature of 20°C, as well as under cyclic temperatures of 14.5°C (14 h) and 11.5°C (10h), which was within the temperature extremes observed in the field microcosms. E2-½ ranged from 157 to 686 d at 20°C and from 103 to 608 d at the cyclic temperatures, with the E2-TOT48 ranging from 6 to 21% at 20°C and from 7 to 30% under cyclic temperatures. Despite the overall 6.75°C lower mean temperatures under the cyclic versus constant temperatures, E2 mineralization was stimulated by the temperature cycles in three soils. Regardless of the incubation, the same loamy sand soil always showed larger E2 mineralization than the other eight soils and this loamy sand soil also had the smallest E2 sorption. Current modeling approaches do not take into consideration the effects of temperature fluctuations in the field because the input parameters used to describe degradation are derived from laboratory incubations at a constant temperature. Across the eight soils, E2-½ was on average 1.7 times larger and E2-TOT48 was on average 0.8 times smaller under field temperatures than under a constant 20°C. Hence, we conclude that incubations at 20°C give a reasonable representation of E2 mineralization occurring under field conditions to be expected in a typical Prairie summer season.  相似文献   

14.
This study aimed to demonstrate the impact of phosphorus (P) mineral fertilization on topsoil P content and P leaching. We evaluated 83 datasets from 25 years from lysimeter experiments involving different cropping systems (winter crop, summer crop and autumn tillage, harvested grass) or unfertilized fallow, four types of soil texture, and three levels of applied mineral P fertilizer. A positive monotonic and significant correlation was indicated between P in the topsoil determined by the double lactate method (P DL) and the yearly flow-weight total (TP) concentrations in leachates with Spearman rank correlations r s (r s > 0.183) and probability (p) < 0.05. The present German recommended rates of P mineral fertilization are proposed insufficient to protect fresh and marine waters from undesired P pollution and eutrophication. A long-term reduction of excess soil P is urgent along with other measures to mitigate high P inputs to surface and ground waters.  相似文献   

15.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

16.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

17.
Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani–Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km2. We were surprised to find a low Hg content in soil (range 1–59 μg kg?1) and 50 % of samples with a concentration lower than 6 μg kg?1. The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5–24.5 μg kg?1) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani–Ptolemais basin is present in low concentrations.  相似文献   

18.
ABSTRACT

In this study, granular activated carbon (GAC) was used as an adsorbent for biogas desulfurization. Biogas containing 932–2,350 ppm of H2S was collected from an anaerobic digester to treat the wastewater from a dairy farm with about 200 cows. An adsorption test was performed by introducing the biogas to a column that was packed with approximately 50 L of commercial GAC. The operation ceased if the effluent gas had an H2S concentration of over 100 ppm. The GAC was replaced by a given weight of new GAC in a subsequent test. According to the results, for H2S concentrations in the range of 932–1,560 ppm (average±SD = 1,260 ± 256 ppm), 1 kg of the GAC yielded biogas treatment capacities of 568 ± 112 m3 and H2S adsorption capacities of 979 ± 235 g. For the higher influent H2S concentrations of 2,110 ± 219 ppm, the biogas treatment and H2S-adsorption capacities decreased to 229 ± 18 m3 and 668 ± 47 g, respectively. An estimation indicated a requisite cost of US$16.5 for the purification of 1,000 m3 of biogas containing 2,110 ppm of H2S. This cost is approximately 5% of US$330, the value of 1,000 m3 of biogas.  相似文献   

19.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

20.
The degradation of phenol in acidic solution at pH 3 has been investigated under various photo- and electrochemical conditions. A laboratory-scale reactor on which were mounted net electrodes (RuO2/IrO2-coated Ti anodes (DSA) and stainless steel cathodes) and 254 nm UV lamps was established to effectively reduce ferric reagents. The experimental results of the photoelectron-chemical reaction suggested that the current efficiency of reducing ferric ion was improved by increasing the number of electrodes used, and the UV lamps were important to inducing the reduction of ferric carboxylates, which were the major intermediates that were formed upon a particular degree of phenol oxidation. Accordingly, the addition of an initial concentration of 400 ppm ferrous salt and 10,200 ppm hydrogen peroxide (in a continuous mode) resulted in the removal of over 92 % of TOC (initial phenol?=?2,000 ppm, TOC?=?1,532 ppm) by 4 h of the photoelectro-Fenton and the sequential 2 h of the photo-Fenton processes. HPLC was utilized to monitor the formation of aromatic and carboxylate byproducts, and revealed that the aid of photo irradiation eliminated most of the oxalate residue from the final solution, which would have contributed to the 25 % of the TOC that was inactive in the electrolytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号