首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these "hazard sites." The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart's distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km(2) region in western North Carolina's Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.  相似文献   

2.
Effects of Forest Management Practices on Mid-Atlantic Streams   总被引:1,自引:0,他引:1  
Agricultural and urban land use activities have affected stream ecosystems throughout the mid-Atlantic region. However, over 60% of the mid-Atlantic region is forested. A study was conducted to investigate the effects of management practices on forested stream ecosystems throughout the mid-Atlantic region. The study consisted of two phases: Phase 1 was a literature synthesis of information available on the effects of forest management practices on stream hydrology, erosion and sedimentation, riparian habitat alteration, chemical addition, and change in biotic diversity in the mid-Atlantic region. In Phase 2, data from mid-Atlantic streams were analyzed to assess the effects of forest land use on stream quality at the regional scale. Typically, it is the larger order streams in which monitoring and assessment occurs—3rd order or higher streams. The impacts of forest management practices, particularly hydrologic modifications and riparian buffer zone alteration, occur predominantly in first and second order streams with cumulative impacts translating to higher order streams. Based on the literature review and mid-Atlantic Highland streams analysis, there are short-term (e.g., 2 to 5 years) effects of forest management practices on stream quality at local scales. However, signatures of cumulative effects from forest management practices are not apparent at regional scales in the Highlands. In general, forested land use is associated with good stream quality in the region compared with other land use practices.  相似文献   

3.
The effects of timber harvesting on stream water quality and efficiency of alternate streamside management zones were evaluated in Pockwock Lake and Five Mile Lake watersheds in central Nova Scotia, Canada. The streamside management zone (SMZ) included a 20 m no cut, 20 m select cut and a 30 m select cut buffer strips along the stream. Water quality of eight streams, six in harvested and two in not-harvested watersheds were monitored for two years before and two years after the harvesting of timber. Nonparametric statistical tests on stream water quality showed that there was significant change in the concentration of potassium in six streams, manganese in five streams, zinc in two streams and total nitrogen in one stream after timber harvesting. There was no significant change in the quality of water in two streams used as control sites in the neighboring watersheds of similar size and hydrological characteristics. The results show that forest management practices were most favorable in streams maintained with 30 m select cut followed by 20 m no cut and 20 m select cut SMZ. The streamside zone width and treatment of select cut or no cut in the zone played an important role in filtering or retaining the minerals in surface water runoff. In buffer zones of similar width, the buffer zone with no cut or forested buffer was relatively more effective at protecting stream water quality than select cut SMZ. The vegetation in the zone may have decreased the flow velocity and increased residence time and thus increased filtration and retention of minerals in the riparian soil.  相似文献   

4.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

5.
The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sites were selected from eight-two independent watersheds across the region for sampling and analyses. Clustering of the watersheds by landscape resulted in three distinct groups (forest, crop, and urban) which coincided with watersheds dominant land cover or use. We used non-parametric analyses to test differences in benthos and water chemistry between groups, and used regression analyses to evaluate responses of benthic communities to water chemistry within each of the landscape groups. We found that typical water chemistry measures associated with urban runoff such as specific conductance and dissolved chloride were significantly higher in the urban group. In the crop group, we found variables commonly associated with farming such as nutrients and pesticides significantly greater than in the other two groups. Regression analyses demonstrated that the numbers of tolerant and facultative macroinvertebrates increased significantly in forested watersheds with small shifts in pollutants, while in human use dominated watersheds the intolerant macroinvertebrates were more sensitive to shifts in chemicals present at lower concentrations. The results from this study suggest that landscape based clustering can be used to link upstream landscape characteristics, water chemistry and biotic integrity in order to assess stream condition and likely cause of degradation without the use of reference sites. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.  相似文献   

6.
Management of stream nutrients is becoming increasingly important in order to protect both water quality and aquatic resources throughout the USA. Using an extensive water quality database from the long-term Maryland Biological Stream Survey (MBSS), we describe nutrient relationships to landscape characteristics as total nitrogen (TN) and total phosphorus (TP) of small-order, non-tidal streams in USEPA L2 and L3 ecoregions in Maryland and by MBSS stream order at the L2 and L3 ecoregion levels. To protect stream ecosystem integrity, preliminary reference nutrient estimates (TN and TP) as percentiles (25th of all stream reaches and 75th of stream reference reaches) for the six Maryland L3 ecoregions are: Blue Ridge TN 0.29 and 0.64 mg/L, TP 0.0065 and 0.0090 mg/L; Central Appalachians TN 0.40 and 1.0 mg/L, TP 0.0060 and 0.015 mg/L; Middle Atlantic Coastal Plains TN 0.93 and 2.5 mg/L, TP 0.094 and 0.065 mg/L; Northern Piedmont TN 1.6 and 1.8 mg/L, TP 0.010 and 0.015 mg/L; Ridge and Valley TN 0.40 and 0.98 mg/L, TP 0.0063 and 0.012 mg/L; and Southeastern Plains TN 0.33 and 0.82 mg/L, TP 0.016 and 0.042 mg/L. High levels of both TN and TP are present in many streams found in non-tidal watersheds associated with all Maryland ecoregions, but are especially elevated in the Northern Piedmont and Middle Atlantic Coastal Plain ecoregions, with the latter second-order streams (average TN?>?2.9 mg/L) significantly higher than all other ecoregion–order combinations. Across all six ecoregions, mean nutrient loading for both TN and TP was generally equivalent in first-order streams to nutrient concentrations seen in both second- and third-order streams, indicating a definite need to increase efforts in preventing nutrients from entering first-order streams. Small-order stream nutrient levels are the drivers for subsequent TN and TP inputs into the upper freshwater tidal reaches of the Chesapeake Bay, resulting in a potential risk for altered estuarine ecosystems.  相似文献   

7.
The Reedy River in South Carolina is affected by the urban area of Greenville, the third most populous city in the state, and by the effluents from two large-scale municipal wastewater treatment plants (WWTPs) located on the river. Riverine water chemistry was characterized using grab samples collected annually under spring season baseflow conditions. During the 4-year time period associated with this study, climatic variations included two severe drought spring seasons (2001 and 2002), one above-normal precipitation spring season (2003), and one below-normal precipitation spring season (2004). The influence of drought and human activities on the baseflow chemistry of the river was evaluated by comparing concentrations of dissolved anions, total metals, and other important water chemistry parameters for these different years. Concentrations of copper and zinc, common non-point source contaminants related to urban activities, were not substantially elevated in the river within the urban area under baseflow conditions when compared with headwater and tributary samples. In contrast, nitrate concentrations increased from 1.2–1.6 mg/l up to 2.6–2.9 mg/l through the urban stream reach. Concentrations of other major anions (e.g., sulfate, nitrate) also increased along the reach, suggesting that the river receives continuous inputs of these species from within the urban area. The highest concentrations of major cations and anions typically were observed immediately downstream from the two WWTP effluent discharge locations. Attenuation of nitrate downstream from the WWTPs did not always track chloride changes, suggesting that nitrate concentrations were being controlled by biochemical processes in addition to physical processes. The relative trends in decreasing nitrate concentrations with downstream distance appeared to depend on drought versus non-drought conditions, with biological processes presumably serving as a more important control during non-drought spring seasons.  相似文献   

8.
This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.  相似文献   

9.
水质生物监测是水生态环境质量管理的重要内容,构建实用性强的生物指数有助于推动中国的水质生物监测工作。根据江苏、浙江、辽宁、江西和湖南等省份的溪流与河流湖泊共计839个底栖动物数据,将中国已有的底栖动物科级分类单元水质敏感性分值打分表扩充和修订至159个科。采用统计法分别构建了符合中国可涉水水体(溪流等)和不可涉水水体(河流、湖泊等)底栖动物分值指数(Chinese Macroinvertebrate Score Index,CMSI)和底栖动物平均分值指数(Average Chinese Macroinvertebrate Score Index,ACMSI)及水质评价等级体系。CMSI和ACMSI与总氮、总磷、高锰酸盐指数和溶解氧之间Pearson相关性显著,表明研究构建的CMSI和ACMSI是可以反映水质变化的。建议通过实践进一步验证CMSI和ACMSI的可靠性和实用性。  相似文献   

10.
Urbanization and the subsequent changes in land use/cover inevitably influence the quality and even the quantity of stream water. This issue is widely studied through evaluations on land-use change scenarios or comparisons among historical patterns at the same watershed. However, observational stream discharge changes through urbanization gradient have rarely been discussed. In this study, we analyzed 5-year discharge data from 13 gauges in the Danshui River network with a wide range of urbanization gradient to explore the impacts on observational hydrological characteristics in individual catchments. The results reveal that stream discharge in pristine watersheds is characterized by a larger proportion of baseflow and is less fluctuating. When the forest coverage is <90%, the discharge fluctuation almost doubles. Meanwhile, the baseflow fraction decreases gradually with the increase of paddy area, which may concomitantly result from the increasing irrigation. Such a drop in baseflow may threaten the maintenance of the minimum flow required for the stream aquatic ecosystem. Furthermore, we simulated the stream discharges by TOPMODEL with blind land-use-independent parameters. The results show that the simulated discharges are satisfactory, particularly for the pristine catchments, but not as fitting for the paddy-intensive watersheds perhaps due to the unexpected irrigation. On the whole, the calibrated parameters are dependent with the landscape characteristics. The landscape-based parameter estimations can be applied to simulate discharge well, meaning the potential to assess the ungauged watersheds.  相似文献   

11.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

12.
Using a spatially extensive database from the Maryland Biological Stream Survey (MBSS), we describe nutrient relationships of small-order, non-tidal streams to Maryland watershed basins, Maryland Tributary Strategy basins, and stream order. In addition, we estimate the number of stream km affected by nutrient loading, using derived nutrient criteria. Based on the MBSS spring water quality sampling, we determined several important factors relating to nutrient levels in non-tidal streams. There are strong linear relationships of nutrients to the percentage of agriculture and forested land present within MBSS sampling strata. Both mean total nitrogen (TN) and mean total phosphorus (TP) levels for watershed basins by stream order show exceedances of derived nutrient reference criteria for Maryland. Four Maryland basins have over 85% of their stream kilometers exceeding the TN criterion, with three basins over 90% of the TP criterion. To protect small stream integrity in Maryland, we recommend an upper stream TN criterion between 1.34 and 1.68 mg/L and an upper stream TP criterion between 0.025 and 0.037 mg/L, based on quantile analyses. Elevated levels of both TN and TP are present in non-tidal streams, with subsequent nutrient inputs into the upper freshwater tidal reaches of the Chesapeake Bay.  相似文献   

13.
The focus of this research was upon consequences of urban stormwater runoff entering two streams in Mayagüez, Puerto Rico. Mayagüez is the largest urban area of the western side of the island of Puerto Rico and provides an excellent point of reference to monitor the affects of urban development on water quality in a tropical climate. The two monitored streams were Quebrada del Oro and Cano Majagual. The research hypothesis asks, "Does stormwater runoff from urban development measurably affect the water quality of downstream receiving water by raising the conductivity, temperature, and flow quantity characteristics during storm events in comparison to upstream water quality?" In essence, the results for Quebrada del Oro agreed with the hypothesis of this project, while Cano Majagual produced results different from the hypothesis primarily due to the absence of non-urbanized land use for both upstream and downstream sections as well as the buffering capacity of a large wetland just upstream of the downstream instrument location of Cano Majagual. Both streams showed signs of stream impairment according to the temperature criteria (32°C or 90°F) set by the Junta de Calidad Ambiental and the US Environmental Protection Agency. Dissolved oxygen levels of the streams were severely affected by water temperature and oxygen-consuming matter within these stream systems, making dissolved oxygen and temperature important water quality parameters for tropical climates.  相似文献   

14.
This study evaluates the acidification status and trends in streams of forested mountain ranges in Germany in consequence of reduced anthropogenic deposition since the mid 1980s. The analysis is based on water quality data for 86 long-term monitored streams in the Ore Mountains, the Bavarian Forest, the Fichtelgebirge, the Harz Mountains, the Spessart, the Black Forest, the Thuringian Forest, and the Rheinisches Schiefergebirge of Germany and the Vosges of France. Within the observation period, which starts for the individual streams between 1980 and 2001 and ends between 1990 and 2009, trends in chemical water quality were calculated with the Seasonal Mann Kendall Test. About 87% of the streams show significant (p < 0.05) negative trends in sulfate. The general reduction in acid deposition resulted in increased pH values (significant for 66% of the streams) and subsequently decreased base cation concentrations in the stream water (for calcium significant in 58% and magnesium 49% of the streams). Reaction products of acidification such as aluminum (significant for 50%) or manganese (significant for 69%) also decreased. Nitrate (52% with significant decrease) and chloride (38% with significant increase) have less pronounced trends and more variable spatial patterns. For the quotient of acidification, which is the ratio of the sum of base cations and the sum of acid anions, no clear trend is observed: in 44% of the monitored streams values significantly decreased and in 23% values significantly increased. A notable observation is the increasing DOC concentration, which is significant for 55% of the observed streams.  相似文献   

15.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

16.
The relationship between benthic macroinvertebrate assemblages and cattle density was assessed from fall 2002 through spring 2004 in five small streams that represented a gradient of cattle grazing intensity. All study stream reaches were in pasture with no woody riparian vegetation, but varied in the intensity of cattle grazing (0 cattle ha−1 at site 1 to 2.85 cattle ha−1 at site 5). Regression analysis indicated highly significant and strong macroinvertebrate metric responses to cattle density during most sampling periods. The majority of metrics responded negatively to increased grazing, while a few (total taxa richness, number of sensitive taxa, and % collector filterers) increased along the gradient before declining at the most heavily grazed sites. Total number of sensitive taxa and % Coleoptera had the strongest relationship with cattle density throughout the study period. During some sampling periods, nearly 80% of the variation in these metrics was explained by cattle density. The elmid beetle, Oulimnius, had a particularly strong negative response to the grazing gradient. Study site groupings based on taxa composition, using detrended correspondence analysis (DCA), indicated that benthic samples collected from the reference site and light rotational grazing site were more similar in macroinvertebrate taxa composition than samples collected from the intermediate grazing and heavy grazing sites. Our findings demonstrate that biological integrity, as measured by benthic macroinvertebrate metrics and assemblage composition, is highly related to cattle density in small streams in the Blue Ridge mountains, Virginia, USA. This suggests that the degree of agricultural intensity should be given consideration in stream assessments, as well as land use planning and regulatory decisions.  相似文献   

17.
Riparian forest restoration has become a major focus of watershed initiatives to improve degraded stream ecosystems. In urban watersheds, however, the ability of riparian forests to improve stream ecosystems may be diminished due to widespread, upland disturbance. This paper presents the methodology and some preliminary results from the first year of fieldwork on a 3-year project designed to assess the ecological benefits of riparian reforestation in urban watersheds. The study is based on an integrated, multidisciplinary sampling of physical, chemical, and biological attributes at forested and non-forested sections of 12 streams with different amounts of urban developement within their watersheds. Restored sections of three streams are also being monitored over the 3-year duration of the project. Sampling and analysis will continue through December 2000.  相似文献   

18.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

19.
Little is known about the importance of landscape and land cover to the implementation and performance of agricultural conservation projects designed to improve stream quality. In our study, we addressed the potential importance of landscape and land cover to conservation projects by measuring variation across 191 μ-basins (100–2400 ha) and integrating the observed variation into a study design aimed at determining the effectiveness of conservation projects. Our findings indicate that there are strong gradients across which landscape and land cover attributes vary. Land cover varied along a gradient of agricultural intensity, basin morphometry across gradients of stream closure and basin size, basin substrate was described by variation in drumlin formation, glacial landform type, and soil drainage, while agricultural conservation projects varied according to the level of project implementation. Correlation of these gradients found several associations between landscape and land cover, indicating that agricultural intensity was being constrained predominantly by drumlin formation and glacial landform type. Landscape and land cover did not appear to be determining factors in the implementation of conservation projects by land owners. Based on these findings we chose 32 μ-basins which represented the variability along each of the defined gradients for further study. We conclude that landscape scale variables demonstrate important variation and covariation that can and should be integrated into study designs for the assessment of streams and human activities affecting streams.  相似文献   

20.
The activity of six extracellular enzymes involved in the degradation of dissolved organic carbon compounds was measured in two highly urbanised and two minimally impacted streams east of Melbourne, Australia, using 4-methylumbelliferyl-substrates. Small-scale temporal variation in enzyme activity was determined by repeatedly sampling the same point in the water column, while the effect of flow was determined by sampling in regions of higher and lower flow in both stream types. Replicate samples showed that enzyme activity was not significantly different over small (minutes) time scales. On five of six sampling occasions the enzyme activity was unaffected by flow. On one sampling occasion in a minimally disturbed stream, the difference between the high- and low-flow regions was statistically significant (ANOSIM, Global R= 0.78, P= 0.03). Enzyme activity profiles (activities of the suite of enzymes) of the streams in urbanised catchments were different to those in minimally disturbed catchments. The measurements made in four different streams showed high reproducibility over short time periods (minutes) which lends greater credibility to analogous spatial studies. Although these results determined that small-scale temporal variability was not significant, and that the effects of flow were generally minimal, it is recommended that spatial and temporal variability in the stream be at least considered before any studies measuring extracellular enzyme activity in stream waters are carried out. Such an approach will lead to conclusions from measurements that are not likely to be confounded by variables such as flow rate or time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号