首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
By rapidly modifying key habitat components, habitat restoration is at risk of producing attractive cues for animals without providing habitats of sufficient quality. As such, individual fitness components, such as reproduction, could be reduced and restored habitats could become ecological traps. This risk notably appears by using artificial constructions in restoration projects, yet few studies have evaluated their efficacy in a robust way. We investigated this by analyzing 154 islets that were created or restored to improve the conservation status of 7 colonial Laridae species in the South of France. From 2007 to 2016, we compared occupancy dynamics and breeding parameters of these species between the restored sites and 846 unmanaged nesting sites. We also explored species’ preference for different nesting site characteristics and their respective effect on breeding parameters. Restored nesting sites were 2–9 times as attractive as unmanaged sites for all species except the Black-headed Gull (Chroicocephalus ridibundus). Colonization probability was up to 100 times higher in sites already used by other species the previous year and increased with distance to the shore until >0.2 when distance was over 250 m. Abandonment probability was 29–70% lower when breeding was successful the previous year in all species except the Sandwich Tern (Thalasseus sandvicensis). Productivity and breeding success probability were 2 times higher on managed sites. Distance from the shore was an important attractive characteristic of artificial nesting sites in all species. Other nesting site characteristics had species-specific effects on colonization, abandonment, and breeding success. Our results indicate that managed nesting sites are successful conservation tools for colonial Laridae in the Mediterranean and do not act as ecological traps. Our study showed that testing the ecological trap hypothesis is a robust way to evaluate the success of restoration projects of breeding habitats.  相似文献   

2.
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable‐isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic‐niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic‐niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic‐niche widths in degraded forest. Species with narrow trophic‐niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species’ trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. Flexibilidad Trófica y la Persistencia de Aves de Sotobosque en un Bosque Lluvioso Talado Intensivamente  相似文献   

3.
Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator–prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号