首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning.  相似文献   

2.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

3.
Marine coastal ecosystems, commonly referred to as blue ecosystems, provide valuable services to society but are under increasing threat worldwide due to a variety of drivers, including eutrophication, development, land-use change, land reclamation, and climate change. Ecological restoration is sometimes necessary to facilitate recovery in coastal ecosystems. Blue restoration (i.e., in marine coastal systems) is a developing field, and projects to date have been small scale and expensive, leading to the perception that restoration may not be economically viable. We conducted a global cost–benefit analysis to determine the net benefits of restoring coral reef, mangrove, saltmarsh, and seagrass ecosystems, where the benefit is defined as the monetary value of ecosystem services. We estimated costs from published restoration case studies and used an adjusted-value-transfer method to assign benefit values to these case studies. Benefit values were estimated as the monetary value provided by ecosystem services of the restored habitats. Benefits outweighed costs (i.e., there were positive net benefits) for restoration of all blue ecosystems. Mean benefit:cost ratios for ecosystem restoration were eight to 10 times higher than prior studies of coral reef and seagrass restoration, most likely due to the more recent lower cost estimates we used. Among ecosystems, saltmarsh had the greatest net benefits followed by mangrove; coral reef and seagrass ecosystems had lower net benefits. In general, restoration in nations with middle incomes had higher (eight times higher in coral reefs and 40 times higher in mangroves) net benefits than those with high incomes. Within an ecosystem type, net benefit varied with restoration technique (coral reef and saltmarsh), ecosystem service produced (mangrove and saltmarsh), and project duration (seagrass). These results challenge the perceptions of the low economic viability of blue restoration and should encourage further targeted investment in this field.  相似文献   

4.
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.  相似文献   

5.
Abstract: Conservation and restoration goals are often defined by historical baseline conditions that occurred prior to a particular period of human disturbance, such as European settlement in North America. Nevertheless, if ecosystems were heavily influenced by native peoples prior to European settlement, conservation efforts may require active management rather than simple removal of or reductions in recent forms of disturbance. We used pre‐European settlement land survey records (1859–1874) and contemporary vegetation surveys to assess changes over the past 150 years in tree species and habitat composition, forest density, and tree size structure on southern Vancouver Island and Saltspring Island, British Columbia, Canada. Several lines of evidence support the hypothesis that frequent historical burning by native peoples, and subsequent fire suppression, have played dominant roles in shaping this landscape. First, the relative frequency of fire‐sensitive species (e.g., cedar [Thuja plicata]) has increased, whereas fire‐tolerant species (e.g., Douglas‐fir [Pseudotsuga menziesii]) have decreased. Tree density has increased 2‐fold, and the proportion of the landscape in forest has greatly increased at the expense of open habitats (plains, savannas), which today contain most of the region's threatened species. Finally, the frequency distribution of tree size has shifted from unimodal to monotonically decreasing, which suggests removal of an important barrier to tree recruitment. In addition, although most of the open habitats are associated with Garry oak (Quercus garryana) at present, most of the open habitats prior to European settlement were associated with Douglas‐fir, which suggests that the current focus on Garry oak as a flagship for the many rare species in savannas may be misguided. Overall, our results indicate that the maintenance and restoration of open habitats will require active management and that historical records can provide critical guidance to such efforts.  相似文献   

6.
The outcome of analyses that prioritize locations for conservation on the basis of distributions of species, land cover, or other elements is influenced by the spatial resolution of data used in the analyses. We explored the influence of data resolution on prioritization of Finnish forests with Zonation, a software program that ranks the priority of cells in a landscape for conservation. We used data on the distribution of different forest types that were aggregated to nine different resolutions ranging from 0.1 × 0.1 km to 25.6 × 25.6 km. We analyzed data at each resolution with two variants of Zonation that had different criteria for prioritization, with and without accounting for connectivity and with and without adjustment for the effect on the analysis of edges between areas at the project boundary and adjacent areas for which data do not exist. Spatial overlap of the 10% of cells ranked most highly when data were analyzed at different resolutions varied approximately from 15% to 60% and was greatest among analyses with similar resolutions. Inclusion of connectivity or edge adjustment changed the location of areas that were prioritized for conservation. Even though different locations received high priority for conservation in analyses with and without accounting for connectivity, accounting for connectivity did not reduce the representation of different forest types. Inclusion of connectivity influenced most the outcome of fine-resolution analyses because the connectivity extents that we based on dispersal distances of typical forest species were small. When we kept the area set aside for conservation constant, representation of the forest types increased as resolution increased. We do not think it is necessary to avoid use of high-resolution data in spatial conservation prioritization. Our results show that large extent, fine-resolution analyses are computationally feasible, and we suggest they can give more flexibility to implementation of well-connected reserve networks.  相似文献   

7.
Abstract: The Northwest Forest Plan was implemented in 1994 to protect habitat for species associated with old‐growth forests, including Northern Spotted Owls (Strix occidentailis caurina) in Washington, Oregon, and northern California (U.S.A.). Nevertheless, 10‐year monitoring data indicate mixed success in meeting the ecological goals of the plan. We used the ecosystem management decision‐support model to evaluate terrestrial and aquatic habitats across the landscape on the basis of ecological objectives of the Northwest Forest Plan, which included maintenance of late‐successional and old‐growth forest, recovery, and maintenance of Pacific salmon (Oncorhynchus spp.), and viability of Northern Spotted Owls. Areas of the landscape that contained habitat characteristics that supported these objectives were considered of high conservation value. We used the model to evaluate ecological condition of each of the 36, 180 township and range sections of the study area. Eighteen percent of the study area was identified as habitat of high conservation value. These areas were mostly on public lands. Many of the sections that contained habitat of exceptional conservation value were on Bureau of Land Management land that has been considered for management‐plan revisions to increase timber harvests. The results of our model can be used to guide future land management in the Northwest Forest Plan area, and illustrate how decision‐support models can help land managers develop strategies to better meet their goals.  相似文献   

8.
9.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   

10.
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.  相似文献   

11.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   

12.
Refining Biodiversity Conservation Priorities   总被引:3,自引:1,他引:3  
Abstract:  Although there is widespread agreement about conservation priorities at large scales (i.e., biodiversity hotspots), their boundaries remain too coarse for setting practical conservation goals. Refining hotspot conservation means identifying specific locations (individual habitat patches) of realistic size and scale for managers to protect and politicians to support. Because hotspots have lost most of their original habitat, species endemic to them rely on what remains. The issue now becomes identifying where this habitat is and these species are. We accomplished this by using straightforward remote sensing and GIS techniques, identifying specific locations in Brazil's Atlantic Forest hotspot important for bird conservation. Our method requires a regional map of current forest cover, so we explored six popular products for mapping and quantifying forest: MODIS continuous fields and a MODIS land cover (preclassified products), AVHRR, SPOT VGT, MODIS (satellite images), and a GeoCover Landsat thematic mapper mosaic (jpg). We compared subsets of these forest covers against a forest map based on a Landsat enhanced thematic mapper. The SPOT VGT forest cover predicted forest area and location well, so we combined it with elevation data to refine coarse distribution maps for forest endemic birds. Stacking these species distribution maps enabled identification of the subregion richest in threatened birds—the lowland forests of Rio de Janeiro State. We highlighted eight priority fragments, focusing on one with finer resolved imagery for detailed study. This method allows prioritization of areas for conservation from a region >1 million km2 to forest fragments of tens of square kilometers. To set priorities for biodiversity conservation, coarse biological information is sufficient. Hence, our method is attractive for tropical and biologically rich locations, where species location information is sparse.  相似文献   

13.
Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3-D city environments on ecological niches. We used airborne lidar-derived information on the 3-D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3-D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch-point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation.  相似文献   

14.
Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large‐scale restoration efforts, which should additionally incorporate social and monetary cost–benefit considerations.  相似文献   

15.
Effect of Human Disturbance on Bee Communities in a Forested Ecosystem   总被引:11,自引:0,他引:11  
Abstract:  It is important for conservation biologists to understand how well species persist in human-dominated ecosystems because protected areas constitute a small fraction of the Earth's surface and because anthropogenic habitats may offer more opportunities for conservation than has been previously thought. We investigated how an important functional group, pollinators (bees; Hymenoptera: Apiformes), are affected by human land use at the landscape and local scales in southern New Jersey (U.S.A.). We established 40 sites that differed in surrounding landscape cover or local habitat type and collected 2551 bees of 130 species. The natural habitat in this ecosystem is a forested, ericaceous heath. Bee abundance and species richness within forest habitat decreased, not increased, with increasing forest cover in the surrounding landscape. Similarly, bee abundance was greater in agricultural fields and suburban and urban developments than in extensive forests, and the same trend was found for species richness. Particular species groups that might be expected to show greater sensitivity to habitat loss, such as floral specialists and bees of small or large body size, did not show strong positive associations with forest habitat. Nevertheless, 18 of the 130 bee species studied were positively associated with extensive forest. One of these species is a narrow endemic that was last seen in 1939. Our results suggest that at least in this system, moderate anthropogenic land use may be compatible with the conservation of many, but not all, bee species.  相似文献   

16.
The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual‐level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners’ willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner‐choice model provides an example of moving toward more implementable conservation planning.  相似文献   

17.
Abstract: It is thought that recovery of marine habitats from uncontrollable disturbance may be faster in marine reserves than in unprotected habitats. But which marine habitats should be protected, those areas at greatest risk or those at least risk? We first defined this problem mathematically for 2 alternate conservation objectives. We then analytically solved this problem for both objectives and determined under which conditions each of the different protection strategies was optimal. If the conservation objective was to maximize the chance of having at least 1 healthy site, then the best strategy was protection of the site at lowest risk. On the other hand, if the goal was to maximize the expected number of healthy sites, the optimal strategy was more complex. If protected sites were likely to spend a significant amount of time in a degraded state, then it was best to protect low‐risk sites. Alternatively, if most areas were generally healthy then, counterintuitively, it was best to protect sites at higher risk. We applied these strategies to a situation of cyclone disturbance of coral reefs on Australia's Great Barrier Reef. With regard to the risk of cyclone disturbance, the optimal reef to protect differed dramatically, depending on the expected speed of reef recovery of both protected and unprotected reefs. An adequate consideration of risk is fundamental to all conservation actions and can indicate surprising routes to conservation success.  相似文献   

18.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

19.
Understanding whether assemblages of species respond more strongly to bottom-up (availability of trophic resources or habitats) or top-down (predation pressure) processes is important for effective management of resources and ecosystems. We determined the relative influence of environmental factors and predation by humans in shaping the density, biomass, and species richness of 4 medium-bodied (10–40 cm total length [TL]) coral reef fish groups targeted by fishers (mesopredators, planktivores, grazer and detritivores, and scrapers) and the density of 2 groups not targeted by fishers (invertivores, small fish ≤10 cm TL) in the central Philippines. Boosted regression trees were used to model the response of each fish group to 21 predictor variables: 13 habitat variables, 5 island variables, and 3 fishing variables (no-take marine reserve [NTMR] presence or absence, NTMR size, and NTMR age). Targeted and nontargeted fish groups responded most strongly to habitat variables, then island variables. Fishing (NTMR) variables generally had less influence on fish groups. Of the habitat variables, live hard coral cover, structural complexity or habitat complexity index, and depth had the greatest effects on density, biomass, and species richness of targeted fish groups and on the density of nontargeted fishes. Of the island variables, proximity to the nearest river and island elevation had the most influence on fish groups. The NTMRs affected only fishes targeted by fishers; NTMR size positively correlated with density, biomass, and species richness of targeted fishes, particularly mesopredatory, and grazing and detritivorous fishes. Importantly, NTMRs as small as 15 ha positively affected medium-bodied fishes. This finding provides reassurance for regions that have invested in small-scale community-managed NTMRs. However, management strategies that integrate sound coastal land-use practices to conserve adjacent reef fish habitat, strategic NTMR placement, and establishment of larger NTMRs will be crucial for maintaining biodiversity and fisheries.  相似文献   

20.
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species‐based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. Incorporación de Especies Sustitutas y de Conectividad Marina para Mejorar los Resultados de Conservación  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号