首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The automative diesel engine has long been acknowledged as being “dirtier” than the spark ignition engine and its particulate emissions may be carcinogenic. Possible solutions to the diesel emission problem are combustion modification or aftertreatment devices. Selection of candidate aftertreatment devices requires knowledge of the physical and chemical properties of the particles, including particle morphology, size distribution, mass concentration and emission rates in the exhaust gas stream. The study reported here represents the first of a series of experiments designed to characterize the exhaust emissions and test various aftertreatment devices. This paper deals only with the particulate characterization phase of the program. Results of size distribution, particle concentration and mass emission rate measurements for a 5.71 displacement Oldsmobile diesel engine are given for a variety of engine operating conditions.  相似文献   

2.
Systematic characterization of morphological, mineralogical, chemical and toxicological properties of various size fractions of the atmospheric particulate matter was a main focus of this study together with an assessment of the human health risks they pose. Even though near-ground atmospheric aerosols have been a subject of intensive research in recent years, data integrating chemical composition of particles and health risks are still scarce and the particle size aspect has not been properly addressed yet. Filling this gap, however, is necessary for reliable risk assessment. A high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts. Finally, the risk level for inhalation exposure associated to the carcinogenic character of the studied PAHs has been assessed. The finest fraction (< 0.45 μm) exhibited the highest mass, highest active surface, highest amount of associated PAHs and also highest direct and indirect genotoxic potentials in our model air sample. Risk assessment of inhalation scenario indicates the significant cancer risk values in PM 1.5 size fraction. This presented new approach proved to be a useful tool for human health risk assessment in the areas with significant levels of air dust concentration.  相似文献   

3.
Burning candles and incense generate particulate matter (PM) that produces poor indoor air quality and may cause human pulmonary problems. This study physically characterised combustion particles collected in a church during services. In addition, the emissions from five types of candles and two types of incense were investigated using a combustion chamber. The plasmid scission assay was used to determine the oxidative capacities of these church particles. The corresponding risk factor (CRf) was derived from the emission factor (Ef) and the oxidative DNA damage, and used to evaluate the relative respiratory exposure risks. Real-time PM measurements in the church during candle–incense burning services showed that the levels (91.6 μg/m3 for PM10; 38.9 μg/m3 for PM2.5) exceeded the European Union (EU) air quality guidelines. The combustion chamber testing, using the same environmental conditions, showed that the incense Ef for both PM10 (490.6–587.9 mg/g) and PM2.5 (290.1–417.2 mg/g) exceeded that of candles; particularly the PM2.5 emissions. These CRf results suggested that the exposure to significant amounts of incense PM could result in a higher risk of oxidative DNA adducts (27.4–32.8 times) than tobacco PM. The generation and subsequent inhalation of PM during church activities may therefore pose significant risks in terms of respiratory health effects.  相似文献   

4.
Ecological effects of particulate matter   总被引:13,自引:0,他引:13  
Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic tissues. Acidic and alkaline materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more likely route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. PM deposited directly to the soil can influence nutrient cycling, especially that of nitrogen, through its effects on the rhizosphere bacteria and fungi. Alkaline cation and aluminum availability are dependent upon the pH of the soil that may be altered dramatically by deposition of various classes of PM. A regional effect of PM on ecosystems is linked to climate change. Increased PM may reduce radiation interception by plant canopies and may reduce precipitation through a variety of physical effects. At the present time, evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified. Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.  相似文献   

5.
For researches on toxic chemicals in settled indoor dust, selection of dust fraction is a critical influencing factor to the accuracy of human exposure risk assessment results. However, analysis of the selection of dust fraction in recent studies revealed that there is no consensus. This study classified and presented researches on distribution of toxic chemicals according to dust particle size and on relationship between dust particle size and human exposure possibility. According to the literature, beyond the fact that there were no consistent conclusions on particle size distribution of adherent fraction, dust with particle size less than 100 μm should be paid more attention and that larger than 250 μm is neither adherent nor proper for human exposure risk assessment. Calculation results based on literature data show that with different selections of dust fractions, analytical results of toxic chemicals would vary up to 10-fold, which means that selecting dust fractions arbitrarily will lead to large errors in risk assessment of human exposure to toxic chemicals in settled dust. Taking into account the influence of dust particle size on risk assessment of human exposure to toxic chemicals, a new methodology for risk assessment of human exposure to toxic chemicals in settled indoor dust is proposed and human exposure parameter systems to settled indoor dust are advised to be established at national and regional scales all over the world.  相似文献   

6.
The use of sophisticated air pollution modeling systems to evaluate the impact of different industrial plant emissions is currently done in an extensive way. MM5-CMAQ (PSU/NCAR and EPA, USA) is one of the most applicable air quality modeling systems to evaluate those impacts. In this contribution we present the methodology and results obtained when applying the MM5-CMAQ air quality modeling system for evaluating the potential impact of an incinerator in San Sebastián (Basque Country, Spain). We have used the EMIMO (UPM, Spain) emission model to simulate the emissions from biogenic and anthropogenic sources including traffic and tertiary sector sources. The study includes the air quality impact of a highway located near the incinerator named A8 and 6 industrial plants which already exist. The impact study has been compared with the results obtained from this highway impact and the 6 industrial plants which are normally operating during the last 30 years. The system has been prepared to simulate also Cadmium, Arsenic, Nickel, Lead and Benzo(a)pyrene air quality impacts. The PCDD/F air concentrations have been determined for the 16 toxic dioxins and furans as determined in the bibliography. The criteria pollutants such as CO, NOx, SO(2), PM(10) and O(3) have also been determined according to the different EU Directives which limit the values of such a pollutants for different periods of time.  相似文献   

7.
Fine particle (aerodynamic diameter <2.5 microm) samples were collected during six intensive measurement periods from November 2001 to August 2003 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. Chemical composition of these aerosol samples including major ion components, trace elements, organic and elemental carbon (OC and EC), and particulate polycyclic aromatic hydrocarbons (PAHs) were analyzed to study the impact of long-range transport of anthropogenic aerosol. Aerosol chemical composition data were then analyzed using the positive matrix factorization (PMF) technique in order to identify the possible sources and estimate their contribution to particulate matter mass. Fourteen sources were then resolved including soil dust, fresh sea salt, transformed natural source, ammonium sulfate, ammonium nitrate, secondary organic carbon, diesel vehicle, gasoline vehicle, fuel oil combustion, biomass burning, coal combustion, municipal incineration, metallurgical emission source, and volcanic emission. The PMF analysis results of source contributions showed that the natural sources including soil dust, fresh and aged sea salt, and volcanic emission contributed to about 20% of the measured PM(2.5) mass. Other primary anthropogenic sources such as diesel and gasoline vehicle, coal and fuel oil combustion, biomass burning, municipal incineration, metallurgical source contributed about 34% of PM(2.5) mass. Especially, the secondary aerosol mainly involved with sulfate, nitrate, ammonium, and organic carbon contributed to about 39% of the PM(2.5) mass.  相似文献   

8.
Ambient particle concentration was taken on the traffic sampling site over the Chung-Chi Road over the bridge (CCROB) in front of Hungkuang Institute of Technology (HKIT). The sampling time was from August 1999 to December 1999. During the sampling period, Taiwan's biggest earthquake in more than a century registered 7.3 on the Richter scale (Taiwan Chi-Chi Earthquake). Besides, there are more than 20,000 aftershocks following the Taiwan Chi-Chi Earthquake within 3 months. Thus, the mass concentration of particles with aerodynamic diameters smaller than 2.5 microm (PM2.5) and PM2.5-10 was also collected then compared with the total mass concentration of suspended particles (TSP) in this study. The average TSP, PM2.5-10, and PM2.5 concentrations are 106, 24.6, and 58.0 microg/m3, respectively, after the Taiwan Chi-Chi Earthquake. The average TSP concentrations before and after Taiwan Chi-Chi Earthquake were 69.6 and 127 microg/ m3, respectively. In addition, statistical analysis of the PM10 data from this study and EPA in 1999 yielded a Tstatistic of 0.147, which is smaller than t(0.975,18) = 2.101. It is indicated that there was no significant difference. So, the PM10 concentrations measured after Taiwan Chi-Chi Earthquake in this study were also greater than those data previously obtained from Taiwan EPA in the same region of this area. The relationships between TSP, PM10, PM2.5-10, and PM2.5 particle concentrations and wind speed (R2) are .77, .59, .58, .58, respectively. And the ratios of PM2.5/PM25-10, PM2.5/PM10, and PM10/TSP are 221%, 67.2%, 58.0%, respectively. The average ratios of PM2.5/PM2.5-10 and PM2.5/PM10 increase by about 120% and 17%. It indicated that the fine-particles concentration increases compared to the coarse-particles concentration after 921 Taiwan Chi-Chi Earthquake. And the proposed reasons are that local motor vehicle emissions combined the fine particles transported from the Chi-Chi epicenter. More importantly, the wind direction was mainly blown from southeastern part. These two main factors enhance the fine-particles concentration in this area.  相似文献   

9.
The radioactivity contents of coal and of the different types of ash formed during its combustion are reviewed. Also, the radiological impact of coal-fired plants and the plant features causing this impact are discussed. The depletion or enrichment of radionuclides in the different types of ash is interpreted in terms of the combustion temperature, the size of ash particles and the chemical forms of the radionuclides. The volatilization-condensation process as the postulated mechanism of radionuclide enrichment is also discussed.Past studies of the release of radionuclides from coal-fired plants are compared and the environmental pathways of the radionuclides are highlighted. Individual and collective radiation doses calculated for various coal-fired plants are evaluated and the importance of the different pathways to man is outlined.  相似文献   

10.
Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant. Recommendations for future directions in ammonia research include designing experiments to improve emission factors and their resolution in all significant source categories, developing mass balance models, and refining of the livestock activity level data by eliciting judgment from experts in this field.  相似文献   

11.
The residence time of particulate contamination on the human body is a factor that has an important impact on the accuracy of exposure assessment in the aftermath of an accidental release of radionuclides to the atmosphere. Measurements of particle clearance from human skin were made using an illumination system to excite fluorescence in labelled silica particles and a CCD camera and image processing system to detect this fluorescence. The illumination system consists of high-intensity light emitting diodes (LEDS) of suitable wavelengths arranged on a portable stand. The physically small size of the LEDs allows them to be positioned close to the fluorescing surface, thus maximising the fluorescent signal that can be obtained. The limit of detection was found to be 50 microg of tracer particle per cm2. Experiments were carried out to determine the clearance rates of 10 microm and 3 microm particles from the skin. Results show that, in the absence of any mechanical rubbing of the skin, the clearance of particles from the skin followed an approximately exponential decay with a half-time of 1.5-7.8 h. Skin hairiness and degree of human movement were found, in addition to particle size, to have an important influence on particle fall-off rate.  相似文献   

12.
Cumulative risk assessment of chemical exposures in urban environments   总被引:1,自引:0,他引:1  
We performed a cumulative risk assessment for people living in a hypothetical urban environment, called Urbania. The main aims of the study were to demonstrate how a cumulative risk assessment for a middle-sized European city can be performed and to identify the bottlenecks in terms of data availability and knowledge gaps. The assessment focused on five air pollutants (i.e., PM??, benzene, toluene, nonane and naphthalene) and six food pesticides (i.e., acetamiprid, carbendazim, chlorpyrifos, diazinon, imidacloprid and permethrin). Exposure predictions showed that PM??, benzene and naphthalene exposure frequently exceeded the standards, and that the indoor environment contributed more than the outdoor environment. Effect predictions showed that mixture and interaction effects were generally limited. However, model calculations indicated potential synergistic effects between naphthalene and benzene and between chlorpyrifos, diazinon and toluene. PM?? dominated the health impact expressed in Disability Adjusted Life Years (DALYs). We conclude that measures to reduce the health impact of environmental pollution should focus on the improvement of indoor air quality and the reduction of PM?? emissions. Cumulative risk assessment can be improved by (1) the development of person-oriented exposure models that can simulate the cumulative exposure history of individuals, (2) a better mechanistic understanding of the effects of cumulative stressors, and (3) the development of instruments to prioritize stressors for inclusion in cumulative risk assessments.  相似文献   

13.
To improve long-term radioecological impact assessment for the contaminated ecosystem of Bylot Sound, Greenland, U and Pu containing particles have been characterized with respect to particle size, elemental distribution, morphology and oxidation states. Based on scanning electron microscopy with XRMA, particles ranging from about 20 to 40 microm were isolated. XRMA and mu-XRF mapping demonstrated that U and Pu were homogeneously distributed throughout the particles, indicating that U and Pu have been fused. Furthermore, mu-XANES showed that U and Pu in the particles were present as mixed oxides. U was found to be in oxidation state IV whereas Pu apparently is a mixture of Pu(III) and Pu(IV). As previous assessments are based on PuO2 only, revisions should be made, taking Pu(III) into account.  相似文献   

14.
The trophic activity of birch leaf-eating insects in background and impact (highly polluted) sites near the Middle Ural Copper Smelter has been recorded in 2008–2015. Reduction of emissions leads to a significant decrease in the concentration of heavy metals in birch leaves, and the existing differences in the proportion of damaged leaves between the background and impact sites are leveling off. An increasing temporal trend in foliar damage at the impact site confirms that the trophic activity of leaf-eating insects is being recovered following reduction of toxic load, and the remaining differences from the background territory indicate that this process is still continuing.  相似文献   

15.
Production of radioactive particles for use in environmental studies   总被引:1,自引:0,他引:1  
This paper presents an aerosol generation technique developed to produce dry aerosol particles of various sizes from aqueous solutions of salt. The technique was tested with sodium chloride, lithium carbonate and uranyl acetate at various aqueous concentrations which produced particles in the size range of 0.13-1.37 microm Mass Median Diameter (MMD). The generated aerosols were acceptably monodisperse with a geometric standard deviation of 1.4-2. Both MMD and Mass Median Aerodynamic Diameter (MMAD) increased significantly (p<0.001) with increased concentration of the salt in solution. The technique can also be used to generate aerosols of different chemical species. The results obtained indicate that the system is convenient for use with various aerosol-forming materials, with a stable particle size distribution being maintained for a long period of steady operation. The technique was successfully applied in wind tunnel studies to simulate the release of submicron radioactive particles and their interception by crops, grass and tree canopies. The relevance and application of the technique in other areas of environmental assessment studies is discussed.  相似文献   

16.
This study presents the statistical analysis of PM(10) and PM(2.5) concentrations (measured at a central site, in the Athens area), along with black smoke (BS) data, for a 2-year period. The biennial average concentrations of PM(10) and PM(2.5) were 75 and 40 microg m(-3). The respective average concentration of BS, as estimated by the OECD method, was 108 microg m(-3). Severe exceedances of the PM(10) air quality standards were recorded. The seasonal variation of PM(10) and BS was less pronounced than the variation of PM(2.5), which concentration was elevated by 14.2% during the cold period. Concentrations of all three pollutants were significantly lower during weekends; however, PM(2.5) and BS displayed a more uniform weekly distribution pattern. PM(10) particles were found to be almost equally comprised by PM(2.5) and PM(10-2.5) particles (PM(2.5)/PM(10) ratio=0.53+/-0.09 microg/m(3)). The average PM(10)/BS value was found lower than unity revealing the inappropriateness of the used reflectance conversion method, for the estimation of mass-equivalent BS concentrations, in the study area, where diesel-powered vehicles mainly control emissions of light-absorbing substances. Important reductions in concentrations were observed during days when drivers of diesel-powered taxies and transportation buses went on strike (reaching 40% for BS). Calm wind conditions were found to have an incremental effect on particle concentrations and were also associated with the appearance of persistent episodic events. Increased PM levels were also observed during southern-southwestern wind flows while significantly lower-than-average concentrations were measured during precipitation events. Separate regression analyses were performed for PM(10), PM(2.5) with BS and NO(x) as independent variables, in an attempt to estimate the relative contribution of specific source types (diesel-powered vehicles) to measured particle levels. The contribution of the diesel-exhaust component to PM(10) mass was estimated at 49.9%, while the corresponding contributions to PM(2.5) mass concentrations was 53.8%. These results may have important implications with the oncoming decision of national authorities to allow the purchase of diesel-powered private cars to the residents of the Greater Athens Area, which was forbidden up to this day.  相似文献   

17.
In this study, organic extracts of total suspended particles (TSP) and the particulate matter (PM) with the size below 2.5 microm (PM(2.5)) combined with organic extracts of the gas phase (GP) collected at two urban and two background localities were analyzed with a bacterial genotoxicity test, SOS chromotest, and an in vitro test for the dioxin toxicity determination, using a modified cell-line of rat hepatoma H4IIE.luc. In addition, the samples of TSP and GP were analyzed for PAHs contents. The PAHs concentrations and both of the toxic activities at the urban localities were much higher than ones at the background localities. Predominantly, traffic was a source of the urban air pollution there which was also confirmed by the evaluation of portions of certain PAHs (BaP/BPE, PYR/BaP) at the localities. On the other hand, the background localities were apparently affected by a long-distance transport of the pollutants from urban and industrial centers. The results of the bioassays indicated potential health risks for the population exposed to the organic air pollutants, especially at the urban localities. Based on the collected samples, distribution of the organic pollutants with the toxic effects in the air was evaluated. The significant portion of the direct genotoxins was bound to the particles larger than 2.5 microm. On the contrary, the indirect genotoxins were bound predominantly to the particles with the size below 2.5 microm. However, in the urban air they may be also bound to the larger particles, as well. While the direct genotoxicity may be related with the presence of PAH-derivatives as well as some polar organic pollutants, the indirect genotoxicity is related with the detected carcinogenic PAHs. But besides the above specified pollutants it is also necessary to consider the presence of other toxic components of the complex organic air pollution mixture that may also show potential health risks. This study demonstrates application of the combination of the screening bioassays for the evaluation of organic air pollution and identification of its health risks.  相似文献   

18.
科学识别PM_(2.5)的空间分异及其驱动因素,是实现区域空气污染治理的关键。以国测点日均PM_(2.5)浓度为数据来源,基于多种空间分析方法,研究长江三角洲城市群PM_(2.5)浓度的时空演变及影响因素。结果发现:(1)2013~2017年,长江三角洲城市群的PM_(2.5)年平均浓度,处于不断下降的趋势;城市间的差异,呈现逐渐减少的趋势。(2)一年中,12月份的PM_(2.5)浓度最高,8月份的PM_(2.5)浓度最低。1~12月,PM_(2.5)浓度先减后增。(3)2013年,PM_(2.5)高浓度区域主要分布在江苏省;2017年,PM_(2.5)高浓度区域主要分布在安徽省。5年间,PM_(2.5)浓度的空间重心,向安徽省转移72 km。(4)长江三角洲城市群PM_(2.5)浓度存在明显的空间自相关。存在PM_(2.5)浓度高-高值区、低-低值区"扎堆"现象,且集聚程度趋于增大。(5)影响PM_(2.5)浓度的因素包括了自然因素和社会因素。自然因素中,降雨与PM_(2.5)浓度显著相关。社会因素主要来自工业排放、交通排放和能源消耗。其中,能源消耗的影响程度最大,工业排放次之,交通排放最后。  相似文献   

19.
When assessing human health or ecosystem impacts of chemicals several calculation steps need to be addressed. Matrix algebra solving techniques are a useful approach to structure and solve the system of mass balance equations assessing chemical fate in environmental multimedia models. We suggest expanding this matrix approach towards a framework which includes the exposure, effect, and damage assessment for human health and ecosystems, also applicable to spatial modeling. Special emphasis is laid upon interpretation of the physical meaning of different elements within the matrices. The proposed framework provides several advantages such as simplified updating or extending of models to new impact pathways, possibility of covering various models within the same framework and transparency. Interpretation of intermediate and final results is facilitated, e.g., allowing for direct identification of dominating exposure pathways. Model comparability and evaluation is well supported, as the four matrices contain all intermediate results in a clear and interpretable way, independent from parameters, such as amount and place of emission. Multidisciplinary work is strongly facilitated enabling the linkage of different models from various disciplines together, since each of its modules defines a clear interface of intermediate results. This framework was reviewed by an independent expert panel within a UNEP/SETAC workshop, and adopted as starting-point for new advances in modeling environmental toxic releases within the UNEP/SETAC Life Cycle Initiative.  相似文献   

20.
Glycine uptake by an isolated Pseudomonas species as a sole nitrogen source was studied in the presence of inorganic particulate. A pure culture of Pseudomonas species was grown in a continuous culture apparatus using a nitrogen-limited medium. The biomass from the chemostat was used in batch studies to evaluate the effects of alumnia or kaolinite on the glycine uptake rate. Stimulation and inhibition were dependent on the surface area of the particles added to the system. Stimulation occurred at low particle concentrations, while inhibition occurred at higher particle concentrations. Enhanced glycine uptake is attributed to an “adsorption” mechanism which may associate with the removal of toxic inhibitors from solution by adsorption onto the particle surface. Inhibition by these particles at high surface area densities may involve the removal of required compounds, as a factor of the particle surface area and not its size or type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号