首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human biomonitoring studies measuring bisphenol A (BPA) in urine have shown widespread exposure in the general population. Diet is thought to be a major route of exposure. We studied urinary BPA patterns in five individuals over a 48-h period of fasting (bottled water only). Personal activity patterns were recorded with a diary to investigate non-dietary routes of exposure. All urine void events during the fast were collected, as well as events before and after the fast. The pattern of BPA concentrations was similar for all participants: they rose near the beginning of the fast (after the pre-fast meal), declined over the next 24 h, fluctuated at lower levels during the second day, and then rose after the post-fast meal. Concentrations (~ 2 μg/g creatine) and calculated BPA intakes (~ 0.03 μg/kg-day) in these individuals during the first 24 h were consistent with general population exposures. For the second 24 h, concentrations and intakes declined by about two-thirds. One of the individuals had an extraordinary pre-fast exposure event with concentrations rising as high as 98 μg/g creatine but declining to < 5 μg/g creatine by day 2. Given patterns found in day 1 and the subsequent decline to lower levels in day 2, we hypothesize that BPA exposures in these individuals were diet-driven. No events in the diary (use of personal care products, e.g.) appear associated with exposures. On day 2, non-dietary sources may still be present, such as from dust. Another hypothesis is that small reservoirs of BPA from past exposures are released from storage (lipid reservoirs, e.g.) and excreted.  相似文献   

2.
Bisphenol A (BPA) exposure during early life may have endocrine-disrupting effects, but the dietary and sociodemographic predictors of BPA exposure during pregnancy and childhood remain unclear. Our aim was to evaluate the correlations between, and sociodemographic and dietary predictors of, serial urinary BPA concentrations measured during pregnancy and childhood in a Spanish birth cohort study. BPA was measured in two spot urine samples collected from 479 women during the first and third trimester of pregnancy and in one urine sample from their 4-year old children (n = 130). Average dietary intakes were reported in food frequency questionnaires during the first and third pregnancy trimester and at age 4 years. Multivariate mixed models and linear regression models were used to estimate associations between sociodemographic and dietary factors and BPA concentrations. A small, but statistically significant correlation was found between serial maternal BPA concentrations measured during pregnancy (r = 0.17). Pregnant women who were younger, less-educated, smoked, and who were exposed to second-hand tobacco smoke (SHS) had higher BPA concentrations than others. BPA concentrations were also higher in children exposed to SHS. High consumption of canned fish during pregnancy was associated with 21% [GM ratio = 1.21; 95%CI 1.02, 1.44] and 25% [GM ratio = 1.25; 95%CI 1.05, 1.49] higher urinary BPA concentrations in the first and third pregnancy trimester, respectively, compared to the lowest consumption group. This study suggests that canned fish may be a major source of BPA during pregnancy in Spain, a country of high canned fish consumption. Further evaluation of specific BPA exposure sources in the sociodemographic group of younger women who smoke, are exposed to SHS, and have a low educational level is needed. Studies identifying sources of exposure would benefit from repeat BPA measurements and questionnaires specifically focused on dietary and packaging sources.  相似文献   

3.
This study reports concentrations and human dietary intake of hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs) as well as selected “novel” brominated flame retardants (NBFRs) and organochlorine pesticides, in ten staple food categories. Samples were sourced from areas in Taizhou City, eastern China, where rudimentary recycling and disposal of e-waste is commonplace, as well as from nearby non-e-waste impacted control areas. In most instances, concentrations in foods from e-waste recycling areas exceeded those from control locations. Concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (BEH-TBP) in samples from e-waste sites were 3.09–62.2 ng/g and 0.81–16.3 ng/g lipid weight (lw), respectively; exceeding consistently those in foods acquired from control sites by an order of magnitude in many cases. In contrast, while concentrations of HBCD in some foods from e-waste impacted areas exceed those from control locations; concentrations in pork, shrimp, and duck liver are higher in control samples. This highlights the potential significance of non-e-waste sources of HBCD (e.g. building insulation foam) in our study areas. While concentrations of DDT in all foods examined except pork were higher in e-waste impacted samples than controls; our exposure estimates were well below the provisional tolerable daily intake of 0.01 mg/kg bw/day derived by the Joint FAO/WHO Meeting on Pesticide Residues. Concentrations of ΣPCBs resulted in exposures (650 and 2340 ng/kg bw/day for adults and children respectively) that exceed substantially the Minimal Risk Levels (MRLs) for ΣPCBs of 20 ng/kg bw/day derived by the Agency for Toxic Substances & Disease Registry. Moreover, when expressed in terms of dioxin-like toxicity equivalency based on the four dioxin-like PCBs monitored in this study (DL-PCBs) (PCB-105, 118, 156, and 167); concentrations in e-waste impacted foods exceed limits set by the European Union in 6 of the 8 food groups studied and result in dietary exposures for children (10.2 pg TEQ/kg bw/day) that exceed the WHO tolerable daily intake of 1–4 pg TEQ/kg bw/day.  相似文献   

4.
Trihalomethanes (THMs, namely, CHCl3, CHCl2Br, CHClBr2 and CHBr3) are disinfection by-products that are present in drinking water. These toxic chemicals are also present in meat, dairy products, vegetables, baked goods, beverages and other foods, although information regarding their concentrations and origin is very limited. This study investigates sorption of THMs occurring during rinsing and cooking of foods and the significance of food as an exposure source.Initial estimates of THM uptake were measured in experiments representing rinsing with tap water at 25 C using nine types of food, and for cooking in tap water at 90 C for fourteen other foods. A subset of foods was then selected for further study over a range of THM concentrations (23.7–118.7 μg/l), temperatures (25 C and 90 C), food concentrations (0.2–1.4, food weight: water weight), and contact times (5–240 min). Data were analyzed using regression and exponential models, and diffusion models were used to help explain the trends of THM uptake.Among vegetables, sorbed THM concentrations at 25 C were 213 to 774 ng/g for CHCl3, 53 to 609 ng/g for CHCl2Br, and 150–845 ng/g for CHClBr2. Meats at 90 C tended to have higher concentrations, e.g., 870–2634 ng/g for CHCl3. Sorbed concentrations increased with contact time and THM concentration, and decreased with food concentration in rinsing tests (using spinach, iceberg-head lettuce and cauliflower) and cooking tests (using tomato, potato, beef and miso–tofu soup). For most foods, THM uptake was diffusion limited and several hours were needed to approach steady-state levels. Swelling, hydrolysis and other physical and chemical changes in the food can significantly affect sorption. Screening level estimates for CHCl3 exposures, based on experimental results and typical food consumption patterns, show that uptake via foods can dominate that due to direct tap water consumption, suggesting the importance of sorption and the need for further evaluation of THM intake due to foods.  相似文献   

5.
4-Nonylphenol (NP) and bisphenol A (BPA) are phenolic substances used in high volumes by the industry. Studies on cells and in experimental animals have shown that both these compounds can be classified as estrogenic hormone disrupters. Information about the exposure of humans to NP and BPA is still scarce, especially regarding levels in human blood. The first aim of this study was to investigate possible sources of NP and BPA exposure from food, by analyzing the levels of NP and BPA from a Swedish food market basket, based on the Swedish per capita food consumption. A second aim was to investigate blood serum levels of NP and BPA, as well as NP-ethoxylates, among young women in Sweden (n = 100). Moreover, associations between food consumption and blood NP and BPA levels were studied. In food, NP was to some extent found at levels above limit of quantification (LOQ 20 ng/g fresh weight) in fruits, cereal products, vegetables, and potatoes. BPA levels above LOQ (2 ng/g fresh weight) were found in fish, meats, potatoes, and dairy products. The estimated mean intakes per capita were (medium bound) 27 μg NP/day and 3.9 μg BPA/day, showing that food is a source of BPA and NP in the general Swedish population. In blood serum, free NP above limit of detection (LOD 0.5 ng/g) was detected in 46% of the study participants while detectable levels of total NP (LOD 0.8 ng/g) were observed in 43%. The corresponding percentages for BPA were 25% and 22%, respectively. The results indicate that there is a continuous source of exposure to NP and BPA that is high enough for free NP and BPA to be detected in some consumers. Among the participants with quantifiable levels of free and total NP (n = 38), 85% (median, range: 38–112%) of the NP was present as free NP. For BPA 76% (49–109%) was detected as free BPA (n = 15). All women had levels of ethoxylates of NP below LOD (0.1–0.7 ng/g). A significantly higher total consumption of fruits and vegetables was reported in questionnaires by participants with NP levels at or above LOD than among women with levels below LOD. This result is supporting the market basket results of relatively high NP levels in these types of food.  相似文献   

6.
Parabens are alkyl esters of p-hydroxybenzoic acid and are used as antimicrobial preservatives in a range of consumer products, including cosmetics, pharmaceuticals, and foodstuffs. Despite their widespread use, prior to this study, paraben concentrations in foodstuffs from China and human dietary exposure to these chemicals have been unknown. In this study, concentrations of six parabens were determined in 13 categories of food samples (n = 282), including cereals and cereal products, meat, fish and seafood, eggs, dairy products, bean products, fruits, vegetables, cookies, beverages, cooking oils, condiments, and others, collected from nine cities in China. Almost all (detection rate: 99%) food samples contained at least one of the parabens analyzed, and the total concentrations (ΣParabens; sum of six parabens) ranged from below limit of quantification (LOQ) to 2530 ng/g fresh weight, with an overall mean value of 39.3 ng/g. Methyl paraben (MeP), ethyl paraben (EtP), and propyl paraben (PrP) were the major paraben analogs found in foodstuffs, and these compounds accounted for 59%, 24%, and 10%, respectively, of ΣParaben concentrations. Although the mean concentrations of ΣParabens varied among different categories of food items (from 0.839 ng/g in beverages to 100 ng/g in vegetables), the concentrations were not statistically significant among the 13 food categories, including canned foodstuffs. Estimated daily intake (EDI) of parabens was based on the measured concentrations in foods and the corresponding daily food ingestion rates. The mean and 95th percentile values for EDI were 1010 and 3040 ng/kg body weight (bw)/day for adult men and 1060 and 3170 ng/kg bw/day for adult women, respectively.  相似文献   

7.
Bisphenol A (BPA) and triclosan (TCS) were determined in urine of Belgian overweight and obese (n = 151) and lean (n = 43) individuals. After the first urine collection (0 M), obese patients started a diet program or have undergone bariatric surgery. Hereafter, three additional urine samples from obese patients were collected after 3 (3 M), 6 (6 M) and 12 (12 M) months. Both compounds were detected in > 99% of the samples. BPA had median concentrations of 1.7 and 1.2 ng/mL in obese and lean groups, respectively, while TCS had median concentrations of 1.5 and 0.9 ng/mL in the obese and lean groups, respectively. The obese group had higher urinary concentrations (ng/mL) of BPA (p < 0.5), while no significant differences were found for TCS between the obese and lean groups. No time trends between the different collection moments were observed. The BPA concentrations in the obese group were negatively associated with age, while no gender difference or relationship with body mass index was observed. For TCS, no relationships with gender, BMI, or age were found. The temporal variability of BPA and TCS was assessed with calculation of the intraclass correlation coefficient, Spearman rank correlation coefficients, and surrogate category analysis. We observed evidence that single spot urine samples might be predictive of exposure over a longer period of time. Dietary intakes of BPA and TCS did not differ significantly among the time points considered after obese individuals started losing weight (6 and 12 months). Multiple linear regression analyses after adjusting for age and weight loss revealed negative associations between urinary TCS and serum FT4 in the 0 M and 3 M female obese individuals and positive associations between urinary BPA and serum TSH in the lean group.  相似文献   

8.
In a published controlled dosing experiment, a single individual consumed 5 mg each of labeled di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) on separate occasions and tracked metabolites in his blood and urine over 48 h. Data from this study were used to structure and calibrate simple pharmacokinetic (PK) models for these two phthalates, which predict urine and blood metabolite concentrations with a given phthalate intake scenario (times and quantities). The calibrated models were applied to a second published experiment in which 5 individuals fasted over the course of a 48-h weekend (bottled water only), and their full urine voids were captured and measured for DnBP and DiBP metabolites. One goal of this model application was to confirm the validity of the calibrated models — their validity would be demonstrated if a profile of intakes could be found which adequately duplicated the metabolite concentrations measured in the urine. A second goal was to study patterns of exposure for this group. It was found that all metabolites could be duplicated very well with individual-specific “best-fit” intake scenarios, with one exception. It appears that the model predicted much lower concentrations of the metabolite, 3carboxy-mono-propylphthalate (MCPP), than were observed in all individuals. Modeled as a metabolite of DnBP, this suggests that DnBP was not the major source of MCPP in the urine. For all 5 individuals, the reconstructed dose profiles of the two phthalates were similar: about 6 small bolus doses per day and an intake of about 0.5 μg/kg-day. The intakes did not appear to be associated with diary-reported activities (personal hygiene and medication) of the participants. The modeled frequent intakes suggested one (or both) of two possibilities: ongoing exposures such as an inhalation exposure, or no exposure but rather an ongoing release of body stores of the phthalate metabolites from past exposures.  相似文献   

9.
Tetrabromobisphenol A (TBBPA) and eight bisphenol analogues (BPs) including bisphenol A (BPA) were determined in 388 indoor (including homes and microenvironments) dust samples collected from 12 countries (China, Colombia, Greece, India, Japan, Kuwait, Pakistan, Romania, Saudi Arabia, South Korea, U.S., and Vietnam). The concentrations of TBBPA and sum of eight bisphenols (ƩBPs) in dust samples ranged from < 1 to 3600 and from 13 to 110,000 ng/g, respectively. The highest TBBPA concentrations in house dust were found in samples from Japan (median: 140 ng/g), followed by South Korea (84 ng/g) and China (23 ng/g). The highest ∑ BPs concentrations were found in Greece (median: 3900 ng/g), Japan (2600 ng/g) and the U.S. (2200 ng/g). Significant variations in BPA concentrations were found in dust samples collected from various microenvironments in offices and homes. Concentrations of TBBPA in house dust were significantly correlated with BPA and ∑ BPs. Among the nine target chemicals analyzed, BPA was the predominant compound in dust from all countries. The proportion of TBBPA in sum concentrations of nine phenolic compounds analyzed in this study was the highest in dust samples from China (27%) and the lowest in Greece (0.41%). The median estimated daily intake (EDI) of ∑ BPs through dust ingestion was the highest in Greece (1.6–17 ng/kg bw/day), Japan (1.3–16) and the U.S. (0.89–9.6) for various age groups. Nevertheless, in comparison with the reported BPA exposure doses through diet, dust ingestion accounted for less than 10% of the total exposure doses in China and the U.S. For TBBPA, the EDI for infants and toddlers ranged from 0.01 to 3.4 ng/kg bw/day, and dust ingestion is an important pathway for exposure accounting for 3.8–35% (median) of exposure doses in China.  相似文献   

10.
Prenatal exposure to bisphenol A (BPA) may be associated with adverse health effects in the developing fetus; however, little is known about predictors of BPA exposure during pregnancy. We examined BPA exposure in 491 pregnant women from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort and explored the role of living in the United States on significant dietary predictors of BPA exposure. Women provided urine samples up to two times during pregnancy (n = 866 total samples). We computed the intraclass correlation coefficient (ICC) to evaluate variability in concentrations between collections and used generalized estimating equation (GEE) models to assess predictors of exposure. Geometric mean (GSD) BPA concentrations were 0.9 (2.8) μg/L and 1.0 (2.6) μg/L at the first and second prenatal visits, respectively. We observed greater within- than between-woman variability in urinary BPA concentrations (ICC = 0.22). GEE models suggest that women who lived in the United States their entire life had 38% (CI: − 0.1, 89.3) higher urinary BPA concentrations compared with other immigrant women. Additionally, women who consumed ≥ 3 sodas per day or hamburgers three times a week or more had 58% (CI: 18.0, 112.1) and 20% (CI: − 0.2, 45.2) higher urinary BPA concentrations, respectively, compared with women who consumed no sodas or hamburgers. A higher percentage of women who lived their entire life in the United States reported increased consumption of sodas and hamburgers compared with other immigrant women. Independent of other factors, BPA urinary concentrations were slightly higher when the sample was collected later in the day. As in previous studies, high within-woman variability in urinary BPA concentrations confirms that several samples are needed to properly characterize exposure during pregnancy. Results also suggest that some factors could be modified to minimize exposures during pregnancy in our study participants (e.g., reducing soda and hamburger intake) and that factors associated with acculturation might increase BPA concentrations.  相似文献   

11.
Dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCHs) are widely detected in the environment, although they have been banned in China since 1980s. To better understand the route-specific daily uptake of the pesticides by humans, a total of 322 food, dust, and air samples were collected in Shanghai, China, during 2008–2011. The median concentrations were 0.2–126.6 and 0.03–1.6 ng/g wet weight for DDTs (DDT and its metabolites) and HCHs, respectively, in different types of foods. The values in dust (indoors and outdoors) were 5.7–29.8 and 1.3–5.4 ng/g, and 13.9 × 10 3 and 2.6 × 10 3 ng/m3 in air (gas + particle) for DDTs and HCHs, respectively. The daily uptake of a pesticide by humans was calculated via the pesticide intake multiplied by its uptake efficiency. The uptake efficiencies of DDTs and HCHs in food through human intestines were estimated using bioaccessibility measured via an in vitro method simulating the human gastrointestinal digestion process. The total daily uptakes of DDTs and HCHs through three routes (i.e., ingestion, inhalation, and dermal contact) were 79.4 and 4.9 ng/day, respectively, for children, and 131.1 and 8.0 ng/day, respectively, for adults. Ingestion via food and dust was the main route of human exposure to the pesticides, and the daily uptake of the pesticides via food consumption accounted for 95.0–99.2% of the total.  相似文献   

12.
Maternal diet not only provides essential nutrients to the developing fetus but is also a source of prenatal exposure to environmental contaminants. We investigated the association between dietary intake of dioxins and PCBs during pregnancy and birth size. The study included 50,651 women from the Norwegian Mother and Child Cohort Study (MoBa). Dietary information was collected by FFQs and intake estimates were calculated by combining food consumption and food concentration of dioxins, dioxin-like PCBs and non-dioxin-like PCBs. We used multivariable regression models to estimate the association between dietary intake of dioxins and PCBs and fetal growth. The contribution of fish and seafood intake during pregnancy was 41% for dietary dioxins and dioxin-like PCBs and 49% for dietary non-dioxin-like PCBs. Further stratified analysis by quartiles of seafood intake during pregnancy was conducted. We found an inverse dose–response association between dietary intake of dioxins and PCBs and fetal growth after adjustment for confounders. Newborns of mothers in the upper quartile of dioxin and dioxin-like PCBs intake had 62 g lower birth weight (95% CI: − 73, − 50), 0.26 cm shorter birth length (95% CI: − 0.31, − 0.20) and 0.10 cm shorter head circumference (95% CI: − 0.14, − 0.06) than newborns of mothers in the lowest quartile of intake. Similar negative associations for intake of dioxins and dioxin-like PCBs were found after excluding women with intakes above the tolerable weekly intake (TWI = 14 pg TEQ/kg bw/week). The negative association of dietary dioxins and PCBs with fetal growth was weaker as seafood intake was increasing. No association was found between dietary dioxin and PCB intake and the risk for small-for-gestational age neonate. In conclusion, dietary intakes of dioxins and PCBs during pregnancy were negatively associated with fetal growth, even at intakes below the TWI.  相似文献   

13.
BackgroundHuman exposures to bisphenol A (BPA) are widespread. The current study addresses uncertainties regarding human pharmacokinetics of BPA.ObjectiveTo reduce uncertainties about the metabolism and excretion of BPA in humans following oral administration.MethodsWe exposed six men and eight women to 100 μg/kg bw of deuterated BPA (d6-BPA) by oral administration and conducted blood and urine analysis over a three day period. The use of d6-BPA allowed administered d6-BPA to be distinguished from background native (unlabeled) BPA. We calculated the rate of oral absorption, serum elimination, half-life, area under the curve (AUC), urinary excretion, and metabolism to glucuronide and sulfate conjugates.ResultsMean serum total (unconjugated and conjugated) d6-BPA Cmax of 1711 nM (390 ng/ml) was observed at Tmax of 1.1 ± 0.50 h. Unconjugated d6-BPA appeared in serum within 5–20 min of dosing with a mean Cmax of 6.5 nM (1.5 ng/ml) observed at Tmax of 1.3 ± 0.52 h. Detectable blood levels of unconjugated or total d6-BPA were observed at 48 h in some subjects at concentrations near the LOD (0.001–0.002 ng/ml). The half-times for terminal elimination of total d6-BPA and unconjugated d6-BPA were 6.4 ± 2.0 h and 6.2 ± 2.6 h, respectively. Recovery of total administered d6-BPA in urine was 84–109%. Most subjects (10 of 14) excreted > 90% as metabolites within 24 h.ConclusionsUsing more sensitive methods, our study expands the findings of other human oral pharmacokinetic studies. Conjugation reactions are rapid and nearly complete with unconjugated BPA comprising less than 1% of the total d6-BPA in blood at all times. Elimination of conjugates into urine largely occurs within 24 h.  相似文献   

14.
BackgroundTraditional food (TF) consumption represents the main route of persistent organic pollutant (POP) exposure for indigenous Arctic Canadians. Ongoing dietary transitions away from TFs and toward imported foods (IFs) may contribute to decreasing POP exposures observed in these groups.MethodsTo explore this issue, we combined the global fate and transport model GloboPOP and the human food chain bioaccumulation model ACC-Human Arctic to simulate polychlorinated biphenyl (PCB) exposure in two indigenous Arctic Canadian communities from the Inuvik region, Northwest Territories and Baffin region, Nunavut. Using dietary survey information from initial (1996–98) and follow-up (2005–07) biomonitoring campaigns in Inuvik and Baffin, we simulated PCB exposures (PCB-118, -138, -153, and -180) for each individual study participant and also whole study populations.ResultsTF intake rates, particularly of marine mammals (MMs), were the most important predictors of modeled PCB exposure, while TF consumption did not associate consistently with measured PCB exposures. Further, reported mean TF intake increased from baseline to follow-up in both Inuvik (from 8 to 183 g d 1) and Baffin (from 60 to 134 g d 1), opposing both the expected dietary transition direction and the observed decrease in human PCB exposures in these communities (ΣPCB Inuvik: from 43 to 29 ng g lipid 1, ΣPCB Baffin: from 213 to 82 ng g lipid 1). However dietary questionnaire data are frequently subject to numerous biases (e.g., recall, recency, confirmation), and thus casts doubt on the usefulness of these data.ConclusionsUltimately, our model's capability to reproduce historic PCB exposure data in these two groups was highly sensitive to TF intake, further underscoring the importance of accurate TF consumption reporting, and clarification of the role of dietary transitions in future POP biomonitoring of indigenous Arctic populations.  相似文献   

15.
Concentrations of 14 polybrominated diphenyl ether (PBDEs) and 28 polychlorinated biphenyl (PCBs) congers were measured in 137 samples of fish and meat from Nanjing, a city in the Yangtze River Delta, China. Total concentrations of PBDEs were less in fish (mean of 180 pg/g ww; range 8.0–1100 pg/g ww), but more in non fish foods (mean of 180 pg/g ww; range 15–950 pg/g ww) than those reported from other countries. The total dietary intake of PBDEs and PCBs by humans were 9.9 ng PBDE/d and 870 ng PCB/d, respectively. The daily intake by a 60 kg adult of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQWHO) from PCBs was estimated to be 49 pg PCBTEQWHO/d (0.82 pg PCBTEQWHO/kg bw), which is less than the tolerable daily intake suggested by the World Health Organization (WHO). The daily intake of meat and fish accounted for 57.2% and 42.8% of the total intake of PCBTEQWHO.  相似文献   

16.
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.  相似文献   

17.
BackgroundMaternal exposure to polycyclic aromatic hydrocarbons (PAH) during pregnancy has been associated with reduced fetal growth. However, the role of diet, the main source of PAH exposure among non-smokers, remains uncertain.ObjectiveTo assess associations between maternal exposure to dietary intake of the genotoxic PAH benzo(a)pyrene [B(a)P] during pregnancy and birth weight, exploring potential effect modification by dietary intakes of vitamins C, E and A, hypothesized to influence PAH metabolism.MethodsThis study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Dietary B(a)P and nutrient intakes were estimated based on total consumption obtained from a food frequency questionnaire (FFQ) and estimated based on food composition data. Data on infant birth weight were obtained from the Medical Birth Registry of Norway (MBRN). Multivariate regression was used to assess associations between dietary B(a)P and birth weight, evaluating potential interactions with candidate nutrients.ResultsThe multivariate-adjusted coefficient (95%CI) for birth weight associated with maternal energy-adjusted B(a)P intake was − 20.5 g (− 31.1, − 10.0) in women in the third compared with the first tertile of B(a)P intake. Results were similar after excluding smokers. Significant interactions were found between elevated intakes of vitamin C (> 85 mg/day) and dietary B(a)P during pregnancy for birth weight (P < 0.05), but no interactions were found with other vitamins. The multivariate-adjusted coefficients (95%CI) for birth weight in women in the third compared with the first tertile of B(a)P intake were − 44.4 g (− 76.5, − 12.3) in the group with low vitamin C intakes vs. − 17.6 g (− 29.0, − 6.1) in the high vitamin C intake group.ConclusionThe results suggest that higher prenatal exposure to dietary B(a)P may reduce birth weight. Lowering maternal intake of B(a)P and increasing dietary vitamin C intake during pregnancy may help to reduce any adverse effects of B(a)P on birth weight.  相似文献   

18.
BackgroundA major threat to public health involving phthalate-tainted foodstuffs occurred in Taiwan in 2011. Phthalates, mainly di-(2-ethylhexyl) phthalate (DEHP), were intentionally added to several categories of food commonly consumed by children. This study investigated the relationship between intake of the phthalate-tainted foods and renal function in children.MethodsChildren aged ≤ 10 years with possible phthalate exposure were enrolled in this study between August 2012 and January 2013. Questionnaires were used to collect details of exposure to phthalate-tainted foodstuffs, and blood and urine samples were collected for clinical biochemical workup. The clinical biomarkers of renal injury, including urinary microalbumin, N-acetyl-beta-d-glucosaminidase (NAG), and β2-microglobulin were measured. Exposure was categorized based on recommended tolerable daily intake level defined by the U.S. Environmental Protection Agency (0.02 mg/kg/day) and the European Food Safety Authority (0.05 mg/kg/day).ResultsWe analyzed intake and renal function of 184 children whose intake of DEHP-tainted foods was known. Higher DEHP exposure to DEHP-tainted foods was significantly associated with increase of urine albumin/creatinine ratio (ACR). Children in the high-exposed group (daily DEHP intake (DDI) > 0.05 mg/kg/day) had 10.395 times the risk of microalbuminuria than the low-exposed group (DDI  0.02 and > 0 mg/kg/day) and no-exposed group combined after adjustment (95% CI = 1.096–98.580, P = 0.04).ConclusionIntake of DEHP from phthalate-tainted foods may be a potential risk factor for microalbuminuria, a marker of glomerular injury in children.  相似文献   

19.
Perfluorinated compounds (PFCs), especially perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), are known to occur throughout the environment and in the human population (Houde et al., 2006). The occurrence of PFCs in human umbilical cord blood and human milk, coupled with the potential developmental toxicity of PFCs, suggests the need for determining the exposure sources and magnitudes of PFCs in infants. In this study, 10 PFCs were measured in 24 pooled samples consisting of 1237 individual human milk samples. The samples were collected from 12 provinces of China in 2007. PFOS and PFOA were the predominant PFCs found in all the samples tested. The geometric mean (GM) and median of the concentrations were 46 pg/mL and 49 pg/mL for PFOS, 46 pg/mL and 34.5 pg/mL for PFOA respectively. A large variation in geographical distribution was observed for PFCs in human milk. High concentrations of PFOA (814 pg/ml for the rural samples and 616 pg/ml for the urban samples) were found in human milk from Shanghai. Estimated dietary intakes (EDI) were established and the median, GM and the highest EDI of the total PFCs were 17.2 ng/kg/d, 17.8 ng/kg/d and 129.1 ng/kg/d respectively. The EDI for PFOA (88.4 ng/kg/d) for Shanghai was close to the tolerable daily intake (100 ng/kg/d) proposed by the German Federal Institute for Risk Assessment and the Drinking Water Commission. The results suggest both mothers and infants have a high exposure to PFCs in the Shanghai region. The potential health impact of postnatal exposure through breastfeeding to infants should therefore be comprehensively evaluated.  相似文献   

20.
On the basis of the fifth Chinese total diet study (TDS) performed in 2011, the dietary exposure of the Chinese population to novel brominated flame retardants (NBFRs) was assessed. Six NBFRs were determined in 80 composite samples from four animal origin food groups and 29 pooled human milk samples. Based on gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS) analysis, the levels of the total NBFRs ranged from < LOD to 70.2 ng/g lipid weight (lw) in food composites and from 2.48 to 23.9 ng/g lw in human milk samples. Decabromodiphenyl ethane (DBDPE), with mean levels of 9.03 ng/g lw in food composites and 8.06 ng/g lw in human milk, was the most abundant compound in the total NBFRs. No obvious spatial distribution patterns in China were observed in food samples or human milk. The average estimated daily intake (EDI) of total NBFRs via food consumption for a “standard Chinese man” was 4.77 ng/kg bodyweight (bw)/day, with a range of 0.681 to 18.9 ng/kg bw/day. Meat and meat products were the main dietary source of NBFRs, although levels of NBFRs in aquatic food were found to be the highest among the four food groups. The average EDI of total NBFRs for nursing infants was 38.4 ng/kg bw/day, with a range of 17.4 to 113 ng/kg bw/day, which was approximately eight-fold higher than the EDI for adults, suggesting the heavy body burden of NBFRs on nursing infants. The levels and EDI of DBDPE in the present study were similar to or higher than those of legacy BFRs (i.e., PBDEs and HBCD) in the TDS 2007, indicating that DBDPE, as a main alternative to PBDEs, might have become the primary BFR used in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号