首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
我国目前在区域环境质量评价方面存在一定缺陷,常规评价指标无法表征特征污染物对区域生态环境及人体健康造成的暴露风险。以环境暴露风险理论为基础,对大黄堡湿地自然保护区内的大气、水及土壤构建复合环境要素综合评价模型,评价结果显示保护区的综合判别值为12.68×10-5 a-1,高于国际辐射防护委员会(ICRP)推荐的最大可接受值1.0×10-5 a-1,且地域差异比较明显,其中保护区北部农药厂周边地区潜在健康风险最高、东八里庄附近次之、而后蒲棒村周边相对较小。最终根据评估区域内环境暴露风险评价结果提出具有针对性的防范和治理措施,为保护区环境暴露风险的预警和管理提供决策依据。  相似文献   

2.
Pollution-induced illnesses are caused by toxicants that result from human activity and are often entirely preventable. However, where industrial priorities have undermined responsible governance, exposed populations must reduce their exposure by resorting to voluntary protective measures and demanding emissions abatement. This paper presents a coupled human–environment system model that represents the effects of water pollution on the health and livelihood of a fishing community. The model is motivated by an incident from 1949 to 1968 in Minamata, Japan, where methylmercury effluent from a local factory poisoned fish populations and humans who ate them. We model the critical role of risk perception in driving both social learning and the protective feedbacks against pollution exposure. These feedbacks are undermined in the presence of social misperceptions such as stigmatization of the injured. Through numerical simulation and scenario analysis, we compare our model results with historical datasets from Minamata, and find that the conditions for an ongoing pollution epidemic are highly unlikely without social misperception. We also find trade-offs between human health outcomes, the viability of the polluting industry and the survival of the fishery. We conclude that an understanding of human–environment interactions and misperception effects is highly relevant to the resolution of contemporary pollution problems, and merits further study.  相似文献   

3.
The objective of this paper was to develop a mechanistic-based framework to explicitly incorporate the factors controlling the bioavailability, toxicodynamics and mode of action to enhance predictive ability of arsenic (As) toxicity to protect the health of farmed tilapia Oreochromis mossambicus. We linked the biotic ligand model and damage assessment model to develop a toxicokinetic model for elucidating the site-specific temporal changes of As bioavailability and to characterize how the fish regulate the metal toxicity. We built a bioavailability-mode of action-based growth toxicity model by linking a bioenergetic growth model and damage assessment model to predict how the As affects on the tilapia growth in the entire life span in site-specific field ecosystems. Here we show that the proposed model well describes the water-chemistry-dependent toxicokinetics and toxicodynamics variations of As to tilapia. We selected two local tilapia farms with different water chemistries located at southwestern Taiwan coast region to implement the proposed algorithm to predict the risk of As exposure. Results indicate that the growth toxicity of O. mossambicus in Taihsi is more sensitive than that in Peimen. We found that the effect of ion competition on the As bioavailability and their ecotoxicological effects on tilapia are more obvious in Taihsi comparing with that in Peimen. We suggested that the proposed bioavailability- and mode of action-based framework can be used to capture the biological response and regulation of tilapia to As exposures. It is applicable for a site-specific and long-term ecotoxicological risk assessment.  相似文献   

4.
Causal inference of exposure-response relations from data is a challenging aspect of risk assessment with important implications for public and private risk management. Such inference, which is fundamentally empirical and based on exposure (or dose)-response models, seldom arises from a single set of data; rather, it requires integrating heterogeneous information from diverse sources and disciplines including epidemiology, toxicology, and cell and molecular biology. The causal aspects we discuss focus on these three aspects: drawing sound inferences about causal relations from one or more observational studies; addressing and resolving biases that can affect a single multivariate empirical exposure-response study; and applying the results from these considerations to the microbiological risk management of human health risks and benefits of a ban on antibiotic use in animals, in the context of banning enrofloxacin or macrolides, antibiotics used against bacterial illnesses in poultry, and the effects of such bans on changing the risk of human food-borne campylobacteriosis infections. The purposes of this paper are to describe novel causal methods for assessing empirical causation and inference; exemplify how to deal with biases that routinely arise in multivariate exposure- or dose-response modeling; and provide a simplified discussion of a case study of causal inference using microbial risk analysis as an example. The case study supports the conclusion that the human health benefits from a ban are unlikely to be greater than the excess human health risks that it could create, even when accounting for uncertainty. We conclude that quantitative causal analysis of risks is a preferable to qualitative assessments because it does not involve unjustified loss of information and is sound under the inferential use of risk results by management.  相似文献   

5.
Understanding the public health implications of chemical contamination of drinking water is important for societies and their decision-makers. The possible population health impacts associated with exposure to disinfection by-products (DBPs) are of particular interest due to their potential carcinogenicity and their widespread occurrence as a result of treatments employed to control waterborne infectious disease.We searched the literature for studies that have attempted quantitatively to assess population health impacts and health risks associated with exposure to DBPs in drinking water. We summarised and evaluated these assessments in terms of their objectives, methods, treatment of uncertainties, and interpretation and communication of results.In total we identified 40 studies matching our search criteria. The vast majority of studies presented estimates of generic cancer and non-cancer risks based on toxicological data and methods that were designed with regulatory, health-protective purposes in mind, and therefore presented imprecise and biased estimates of health impacts. Many studies insufficiently addressed the numerous challenges to DBP risk assessment, failing to evaluate the evidence for a causal relationship, not appropriately addressing the complex nature of DBP occurrence as a mixture of chemicals, not adequately characterising exposure in space and time, not defining specific health outcomes, not accounting for characteristics of target populations, and not balancing potential risks of DBPs against the health benefits related with drinking water disinfection. Uncertainties were often poorly explained or insufficiently accounted for, and important limitations of data and methods frequently not discussed. Grave conceptual and methodological limitations in study design, as well as erroneous use of available dose–response data, seriously impede the extent to which many of these assessments contribute to understanding the public health implications of exposure to DBPs. In some cases, assessment results may cause unwarranted alarm among the public and potentially lead to poor decisions being made in sourcing, treatment, and provision of drinking water. We recommend that the assessment of public health impacts of DBPs should be viewed as a means of answering real world policy questions relating to drinking water quality, including microbial contaminants; that they should be conducted using the most appropriate and up-to-date data and methods, and that associated uncertainties and limitations should be accounted for using quantitative methods where appropriate.  相似文献   

6.
There is high demand in environmental health for adoption of a structured process that evaluates and integrates evidence while making decisions and recommendations transparent. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework holds promise to address this demand. For over a decade, GRADE has been applied successfully to areas of clinical medicine, public health, and health policy, but experience with GRADE in environmental and occupational health is just beginning. Environmental and occupational health questions focus on understanding whether an exposure is a potential health hazard or risk, assessing the exposure to understand the extent and magnitude of risk, and exploring interventions to mitigate exposure or risk. Although GRADE offers many advantages, including its flexibility and methodological rigor, there are features of the different sources of evidence used in environmental and occupational health that will require further consideration to assess the need for method refinement. An issue that requires particular attention is the evaluation and integration of evidence from human, animal, in vitro, and in silico (computer modeling) studies when determining whether an environmental factor represents a potential health hazard or risk. Assessment of the hazard of exposures can produce analyses for use in the GRADE evidence-to-decision (EtD) framework to inform risk-management decisions about removing harmful exposures or mitigating risks. The EtD framework allows for grading the strength of the recommendations based on judgments of the certainty in the evidence (also known as quality of the evidence), as well as other factors that inform recommendations such as social values and preferences, resource implications, and benefits. GRADE represents an untapped opportunity for environmental and occupational health to make evidence-based recommendations in a systematic and transparent manner. The objectives of this article are to provide an overview of GRADE, discuss GRADE's applicability to environmental health, and identify priority areas for method assessment and development.  相似文献   

7.
Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates.  相似文献   

8.
Production volumes and the use of engineered nanomaterials in many innovative products are continuously increasing, however little is known about their potential risk for the environment and human health. We have reviewed publicly available hazard and exposure data for both, the environment and human health and attempted to carry out a basic risk assessment appraisal for four types of nanomaterials: fullerenes, carbon nanotubes, metals, and metal oxides (ENRHES project 2009(1)). This paper presents a summary of the results of the basic environmental and human health risk assessments of these case studies, highlighting the cross cutting issues and conclusions about fate and behaviour, exposure, hazard and methodological considerations. The risk assessment methodology being the basis for our case studies was that of a regulatory risk assessment under REACH (ECHA, 2008(2)), with modifications to adapt to the limited available data. If possible, environmental no-effect concentrations and human no-effect levels were established from relevant studies by applying assessment factors in line with the REACH guidance and compared to available exposure data to discuss possible risks. When the data did not allow a quantitative assessment, the risk was assessed qualitatively, e.g. for the environment by evaluating the information in the literature to describe the potential to enter the environment and to reach the potential ecological targets. Results indicate that the main risk for the environment is expected from metals and metal oxides, especially for algae and Daphnia, due to exposure to both, particles and ions. The main risks for human health may arise from chronic occupational inhalation exposure, especially during the activities of high particle release and uncontrolled exposure. The information on consumer and environmental exposure of humans is too scarce to attempt a quantitative risk characterisation. It is recognised that the currently available database for both, hazard and exposure is limited and there are high uncertainties in any conclusion on a possible risk. The results should therefore not be used for any regulatory decision making. Likewise, it is recognised that the REACH guidance was developed without considering the specific behaviour and the mode of action of nanomaterials and further work in the generation of data but also in the development of methodologies is required.  相似文献   

9.
Decision analysis in subsurface contamination management is generally carried out through a traditional engineering economic viewpoint. However, new advances in human health risk assessment, namely, the probabilistic risk assessment, and the growing awareness of the importance of soft data in the decision-making process, require decision analysis methodologies that are capable of accommodating non-technical and politically biased qualitative information. In this work, we discuss the major limitations of the currently practiced decision analysis framework, which evolves around the definition of risk and cost of risk, and its poor ability to communicate risk-related information. A demonstration using a numerical example was conducted to provide insight on these limitations of the current decision analysis framework. The results from this simple ground water contamination and remediation scenario were identical to those obtained from studies carried out on existing Superfund sites, which suggests serious flaws in the current risk management framework. In order to provide a perspective on how these limitations may be avoided in future formulation of the management framework, more matured and well-accepted approaches to decision analysis in dam safety and the utility industry, where public health and public investment are of great concern, are presented and their applicability in subsurface remediation management is discussed. Finally, in light of the success of the application of risk-based decision analysis in dam safety and the utility industry, potential options for decision analysis in subsurface contamination management are discussed.  相似文献   

10.
Inorganic arsenic in Chinese food and its cancer risk   总被引:15,自引:0,他引:15  
Even moderate arsenic exposure may lead to health problems, and thus quantifying inorganic arsenic (iAs) exposure from food for different population groups in China is essential. By analyzing the data from the China National Nutrition and Health Survey (CNNHS) and collecting reported values of iAs in major food groups, we developed a framework of calculating average iAs daily intake for different regions of China. Based on this framework, cancer risks from iAs in food was deterministically and probabilistically quantified. The article presents estimates for health risk due to the ingestion of food products contaminated with arsenic. Both per individual and for total population estimates were obtained. For the total population, daily iAs intake is around 42 μg day(-1), and rice is the largest contributor of total iAs intake accounting for about 60%. Incremental lifetime cancer risk from food iAs intake is 106 per 100,000 for adult individuals and the median population cancer risk is 177 per 100,000 varying between regions. Population in the Southern region has a higher cancer risk than that in the Northern region and the total population. Sensitive analysis indicated that cancer slope factor, ingestion rates of rice, aquatic products and iAs concentration in rice were the most relevant variables in the model, as indicated by their higher contribution to variance of the incremental lifetime cancer risk. We conclude that rice may be the largest contributor of iAs through food route for the Chinese people. The population from the South has greater cancer risk than that from the North and the whole population.  相似文献   

11.
Since the 1970s, precipitation in the Sahel has decreased and become very irregular, leading to widespread drought, whilst the human need for water has rapidly increased. A new “dispositions”-based approach was adapted in order to analyse human interactions with environmental hazards and applied to the case of Hombori village in north-eastern Mali. This article explores how the population and political stakeholders perceive, live with and respond to the increasing scarcity of water. It also explores how their current vulnerability and ability to cope with variations in available water resources indicate future adaptability to climate shocks. On the one hand, this research shows how the population copes with variations in water resource availability: the population’s socio-spatial organisation explains the inhabitants’ exposure to this problem and some of the factors affecting vulnerability, the elderly and women being the hardest hit. The water issue is generally managed on a “day-to-day” basis and considered a big problem only in the dry season, thus lowering any incentive for self-protection. The main two variables that could explain this kind of risk management are the conflicting local governance and current social rules. On the other hand, the discussion of results, based on a conceptual model of social responses, explains why these current “social dispositions” to cope with and even address the water scarcity issue do not guarantee future adaptability to climate change.  相似文献   

12.
Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an ‘adequate’ protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making.  相似文献   

13.
The Amazon Delta and Estuary (ADE) is a region of continental and global ecological importance. Controversy, many of the basic infrastructure and services essential for quality of life and sustainable development of this delta are absent. Using a conceptual model to define socio-economic vulnerability in the urban ADE, a thorough assessment of indicators including sanitation services, housing conditions, household income, population, flood risk and unplanned settlements was conducted in 41 cities at the census sector scale (n = 2938). A multi criterion index was applied to classify urban vulnerability from three dimensions: flood exposure, socio-economic sensitivity and infrastructure. This is the first study to examine urban vulnerability within and between urban areas of the ADE. Results indicated that most of the urban sectors of the ADE are exposed to potential risks due to a combination of flood hazards, poverty and basic structural deficiencies such as insufficient drinking water or inadequate waste water collection, with several sectors being afflicted by similar problems. The assessment of vulnerability indicates that 60–90 % of the urban population live in conditions of moderate to high degree of vulnerability. The ADE cities presented a pattern where vulnerability increases from city center to their newly developed urban areas. Inadequate planning coupled with rapid urbanization has contributed to the development of unplanned settlements in almost half of the urban sectors of the ADE. Combined, these factors contribute to widespread socio-economic vulnerability along the urban spaces of the ADE, increasing exposure to health risks and more frequent seasonal and stochastic events such as storm surges and high flooding levels.  相似文献   

14.
The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.  相似文献   

15.
Risk assessment is considered to be an effective scientific tool which enables decisionmakers to manage hazardous waste-contaminated sites in a cost-effective manner while preserving public health. However, the current risk assessment framework proposed by the US Environmental Protection Agency (US EPA) has limitations in addressing the true variability of population characteristics. This study proposed a methodology that is different from the existing framework by accounting for the true variability of population characteristics. The key differences of the proposed methodology and the existing framework are the (1) use of the transient exposure concentration; (2) use of the entire population rather than a representative ideal individual; (3) use of age- and gender-based population subgroups to represent population characteristics; (4) use of a population growth model to represent growth dynamics; and (5) presentation of risk through a risk profile with risk summarized through a single indicator, potential cancer incidences (PCI). The proposed methodology was applied in a ground water contamination scenario due to benzene to determine its applicability. The results of the study showed that age-based variability of population characteristics is important in predicting the population risk while gender played a small role. The existing US EPA methodology and its variation using age-independent variability of population characteristics overestimate the risk given by PCI substantially, and therefore, the decisions can lead to costly cleanup goals. Population risk is not a single value but a distribution due to the contribution from ditferent individuals of the exposed population. Hence, the decision criterion proposed in this study, PCI, is found to be a useful indicator to describe population carcinogenic risk to the society under a variety of conditions and scenarios.  相似文献   

16.
城市土地置换过程中土壤多环芳烃污染的健康风险评价   总被引:4,自引:0,他引:4  
利用健康风险评价方法判定污染土壤是否需要修复或再次开发已成为一个新的研究领域。以某区域土地置换开发为案例,结合区域未来土地利用类型,采用健康风险评价模型对土壤多环芳烃(PAHs)污染可能给未来入住人群带来的健康风险进行初步评价。结果显示,在正常情况与极端情况两种暴露场合下,考虑直接接触不慎摄入、呼吸土壤尘和皮肤直接接触土壤3种途径,计算出的土壤PAHs污染的致癌风险相对较高,部分点位已经超过了人体健康可接受的致癌风险程度。且以敏感人群儿童为例,利用摄入量和风险评价反推得出,当土壤中PAHs含量低于634 μg/kg时,在极端情况下,儿童致癌风险可降低到可接受的致癌风险水平。随着环境管理工作的深入发展,在城市土地置换过程中应逐步加强环境健康风险评价方面的研究。  相似文献   

17.
Of the 2508 water samples analyzed in 10 districts of Bangladesh, 51%, on an average, contained arsenic levels of 0.05 to 2.50 mg/l. 95% of nail, 96% of hair, and 94% of urine samples contained arsenic above the normal level. Approximately 3.58 million people out of a total of 17.92 million who are drinking water containing arsenic levels >0.20 mg/l are potentially exposed to high risk of health hazard. Eight thousand and five hundred arsenic patients are identified; they are suffering from various skin lesions, gangrene in leg, skin, lung, bladder, liver, and renal cancer. A big portion of the total population is highly vulnerable to various internal cancers. Lowest arsenic concentration in drinking water producing dermatological disease is found to be 0.103 mg/l. However, the exposure time to develop arsenicosis varies from case to case reflecting its dependence on arsenic level in drinking water and food, nutritional status, genetic variant of human being, and compounding factors. This study has determined the high intensity of fluorescent humic substances in drinking water containing elevated concentrations of arsenic and very low concentrations of heavy metals. The synergistic/antagonistic effect of fluorescent compounds present in drinking water may aggravate the toxicity of arsenic. Geochemical study suggests that arsenic may be released from both reductive dissolution of Fe and Mn (oxy)hydroxide and microbial oxidation of organic matter.  相似文献   

18.
This paper examines the age-specific human health risks exposed to inorganic arsenic through arsenic-contaminated farmed fish/shrimp and groundwater consumptions in arseniasis-endemic areas of blackfoot disease (BFD)-endemic area and Lanyang Plain in Taiwan, based on an probabilistic integrated risk assessment framework. We employ an age-dependent predictive physiologically-based pharmacokinetic model to account for arsenic concentrations in target organs. We reconstruct age-specific dose-response profiles for arsenicosis and arsenic-induced cancers by best fitting a pharmacodynamics-based three-parameter Hill equation model to published epidemiological data from West Bengal and Taiwan. The predicted median arsenic concentrations in age group-specific skin, lung, and bladder ranged from 2.24-5.70, 3.76-9.46, and 5.11-20.71 micro g g(-1) in BFD-endemic area, whereas 4.98-12.04, 8.23-19.92, and 11.07-43.45 micro g g(-1) in Lanyang Plain, respectively. Risk analysis indicates that consumption of arsenic-contaminated farmed fish/shrimp and groundwater in arseniasis-endemic areas may increase threat to prevalence of arsenicosis for all age groups, whereas adults may undergo potential risks of arsenic-induced skin, lung and bladder cancers. We show that peoples in Lanyang Plain are more readily associated with higher morbidities for arsenicosis and skin cancer as well as fatalities for lung and bladder cancers than that of peoples in BFD-endemic area. Here we report the first case in which theoretical human health risks for consuming As-contaminated farmed fish/shrimp and groundwater in the arseniasis-endemic areas are alarming under a conservative condition based on a probabilistic risk assessment framework.  相似文献   

19.
The present study aims to investigate how resource strategies, which intend to reduce waste and increase recycling, influence on human exposure to hazardous chemicals from material recycling. In order to examine the flows of hazardous chemicals in recycled material, a mass flow analysis of plastics and paper at European level, including the flow of phthalates, i.e. di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and benzyl-butyl phthalate (BBP), has been performed. The result for the year 2012 shows that 26% of plastic wastes and 60% of paper consumed in Europe were recycled. This corresponds to the finding that approximately 4% of DEHP and BBP and 18% of DBP annual demands in Europe as raw material re-enter the product cycle with recycled plastics and paper. To examine the potential contribution of the phthalate exposure through recycled plastics and paper, a case study assessing the childhood exposures to phthalates from foods packed in recycled paper and plastics has been performed for 2-year-old children in Denmark. The result verifies that an increase in recycled paperboard and PET bottles in food packaging material causes a significant increase in childhood exposure to DBP corresponding to an additional exposure of 0.116–0.355 μg/kg bw/day; up to 18% of the total DBP exposure in Danish 2-year-olds. While most of the DEHP exposure can be explained, more than 50% of DBP and 70% of BBP exposure sources still remain to be identified. Finally, a conceptual framework for a circular economy based on sustainable and clean resource flows is proposed in order to increase material recycling without increasing adverse health effects.  相似文献   

20.
Health condition is related to the economic and social development of a country and the whole world. We concluded that the influencing factors of health risk include environment pollution, food security, disease threat and health care condition, and then an indicators system is put forward in the paper. Based on the foundation of the indicators system, 40 countries were chosen to evaluate the condition of human health risk. With the method of Hierarchical Cluster Analysis, 40 countries were divided into four groups, and we analyzed the characteristic of each group. Compared with other countries at the similar development level of economy, the human health risk of China is much higher. We analyzed the correlation between human health risk and the economy development level, and then we concluded that a country should attach importance to improving the condition of human health, when the GNI per capita is between $ 1000 and 3000 US dollars. The stage is vital for economy development, and also for the improvement of the human health condition. We found that countries with high human health risk are mostly in Africa and Asia. The developed countries should help the developing countries reduce the human health risk for a win-win situation of the development of the whole humanity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号