首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concerns over adverse effects of air pollution on children's health have been rapidly rising. However, the effects of air pollution on childhood growth remain to be poorly studied. We investigated the association between prenatal and postnatal exposure to PM10 and children's weight from birth to 60 months of age. This birth cohort study evaluated 1129 mother-child pairs in South Korea. Children's weight was measured at birth and at six, 12, 24, 36, and 60 months. The average levels of children's exposure to particulate matter up to 10 μm in diameter (PM10) were estimated during pregnancy and during the period between each visit until 60 months of age. Exposure to PM10 during pregnancy lowered children's weight at 12 months. PM10 exposure from seven to 12 months negatively affected weight at 12, 36, and 60 months. Repeated measures of PM10 and weight from 12 to 60 months revealed a negative association between postnatal exposure to PM10 and children's weight. Children continuously exposed to a high level of PM10 (> 50 μg/m3) from pregnancy to 24 months of age had weight z-scores of 60 that were 0.44 times lower than in children constantly exposed to a lower level of PM10 (≤ 50 μg/m3) for the same period. Furthermore, growth was more vulnerable to PM10 exposure in children with birth weight < 3.3 kg than in children with birth weight > 3.3 kg. Air pollution may delay growth in early childhood and exposure to air pollution may be more harmful to children when their birth weight is low.  相似文献   

2.
Burning candles and incense generate particulate matter (PM) that produces poor indoor air quality and may cause human pulmonary problems. This study physically characterised combustion particles collected in a church during services. In addition, the emissions from five types of candles and two types of incense were investigated using a combustion chamber. The plasmid scission assay was used to determine the oxidative capacities of these church particles. The corresponding risk factor (CRf) was derived from the emission factor (Ef) and the oxidative DNA damage, and used to evaluate the relative respiratory exposure risks. Real-time PM measurements in the church during candle–incense burning services showed that the levels (91.6 μg/m3 for PM10; 38.9 μg/m3 for PM2.5) exceeded the European Union (EU) air quality guidelines. The combustion chamber testing, using the same environmental conditions, showed that the incense Ef for both PM10 (490.6–587.9 mg/g) and PM2.5 (290.1–417.2 mg/g) exceeded that of candles; particularly the PM2.5 emissions. These CRf results suggested that the exposure to significant amounts of incense PM could result in a higher risk of oxidative DNA adducts (27.4–32.8 times) than tobacco PM. The generation and subsequent inhalation of PM during church activities may therefore pose significant risks in terms of respiratory health effects.  相似文献   

3.
Little is known regarding how the size distribution of particulate matter (PM) air pollution influences its effect on blood pressure (BP), especially among patients with diabetes. The objective of this study was to explore the short-term associations between size-fractionated PM and BP among diabetes patients. We scheduled 6 repeated BP examinations every 2 weeks from 13 April 2013 to 30 June 2013 in a panel of 35 type 2 diabetes mellitus patients recruited from an urban community in Shanghai, China. We measured real-time PM concentrations in the size range of 0.25 to 10 μm. We used linear mixed-effect models to examine the short-term association of size-fractionated PM and BP after controlling for individual characteristics, mean temperature, relative humidity, day of the week, years with diabetes and use of antihypertensive medication. The association with systolic BP and pulse pressure strengthened with decreasing diameter. The size fractions with the strongest associations were 0.25 to 0.40 μm for number concentrations and ≤ 2.5 μm for mass concentrations. Furthermore, these effects occurred immediately even after 0–2 h and lasted for up to 48 h following exposure. An interquartile range increase in 24-h average number concentrations of PM0.25–0.40 was associated with increases of 3.61 mm Hg in systolic BP and 2.96 mm Hg in pulse pressure. Females, patients younger than 65 years of age and patients without antihypertensive treatment were more susceptible to these effects. Our results revealed important size and temporal patterns of PM in elevating BP among diabetes patients in China.  相似文献   

4.
BackgroundEvidence on health effects of ultrafine particles (UFP) is still limited as they are usually not monitored routinely. The few epidemiological studies on UFP and (cause-specific) mortality so far have reported inconsistent results.ObjectivesThe main objective of the UFIREG project was to investigate the short-term associations between UFP and fine particulate matter (PM) < 2.5 μm (PM2.5) and daily (cause-specific) mortality in five European Cities. We also examined the effects of PM < 10 μm (PM10) and coarse particles (PM2.5–10).MethodsUFP (20–100 nm), PM and meteorological data were measured in Dresden and Augsburg (Germany), Prague (Czech Republic), Ljubljana (Slovenia) and Chernivtsi (Ukraine). Daily counts of natural and cardio-respiratory mortality were collected for all five cities. Depending on data availability, the following study periods were chosen: Augsburg and Dresden 2011–2012, Ljubljana and Prague 2012–2013, Chernivtsi 2013–March 2014. The associations between air pollutants and health outcomes were assessed using confounder-adjusted Poisson regression models examining single (lag 0–lag 5) and cumulative lags (lag 0–1, lag 2–5, and lag 0–5). City-specific estimates were pooled using meta-analyses methods.ResultsResults indicated a delayed and prolonged association between UFP and respiratory mortality (9.9% [95%-confidence interval: − 6.3%; 28.8%] increase in association with a 6-day average increase of 2750 particles/cm3 (average interquartile range across all cities)). Cardiovascular mortality increased by 3.0% [− 2.7%; 9.1%] and 4.1% [0.4%; 8.0%] in association with a 12.4 μg/m3 and 4.7 μg/m3 increase in the PM2.5- and PM2.5–10-averages of lag 2–5.ConclusionsWe observed positive but not statistically significant associations between prolonged exposures to UFP and respiratory mortality, which were independent of particle mass exposures. Further multi-centre studies are needed investigating several years to produce more precise estimates on health effects of UFP.  相似文献   

5.
PM2.5 is the breathable fraction of the particulate matter and some adverse health effects, such as respiratory functionality, cardiological diseases and cancer, can be in some measure attributable to this risk factor exposure. Some of the most carcinogen compounds transported by PM2.5 are nitro-compounds. In this study, a strengthened in vitro bioassay — able to predict the mutagenic/carcinogenic activity of the environmental mixtures — was conducted on PM2.5 organic extracts to define the nitro-compounds burden. PM2.5 air pollution was daily monitored, during 2006, in three cities located in the Northern part of Italy (Torino, Pavia and Verona) and the mutagenic properties of the PM2.5 organic extracts were assessed with the Ames test. The bacterial used in this study were three Salmonella typhimurium strains: TA98, nitroreductase-less mutant TA98NR and YG1021 carrying a nitroreductase-producing plasmid. The annual PM2.5 mean level measured in Torino was 46.5 (± 31.6) μg/m3, in Pavia 34.8 (± 25.1) μg/m3, and in Verona 37.3 (± 27.8) μg/m3, while the mutagenicity expressed as TA98 net reverants/m3 was 28.0 (± 22.1), 28.3 (± 24.9), and 34.2 (± 30.9) respectively. Monthly pool bioassays, conducted with the three different strains, showed a greater mutagenic response of the YG1021 in each city. The relationship among the mutagenic answers for YG1021:TA98:TA98NR was about 6:3:1 (p < 0.001). Over nitroreductase activity enhanced the response of 2.2, 2.0 and 1.7 times for Torino, Pavia, and Verona (ANOVA Torino p < 0.05) respectively. Without nitroreductase activity the genotoxicity was limited. These biological findings are able to describe a relevant role played by the nitro compounds in the mutagenic properties of the urban PM2.5 in the Padana plain; moreover the bacterial nitroreductase plays a predominant role in DNA interaction primarily for Torino PM2.5 extracts.  相似文献   

6.
RationaleExposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood.ObjectiveThis study explored associations between short-term exposures to PM with a diameter < 2.5 μm (PM2.5) and ozone with plasma metabolite concentrations.Methods and resultsWe used cross-sectional data from a cardiac catheterization cohort at Duke University, North Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, acylcarnitines, ketones and total non-esterified fatty acid plasma concentrations were determined in fasting samples. Daily concentrations of PM2.5 and ozone were obtained from a Bayesian space-time hierarchical model, matched to each patient's residential address. Ten metabolites were selected for the analysis based on quality criteria and cluster analysis. Associations between metabolites and PM2.5 or ozone were analyzed using linear regression models adjusting for long-term trend and seasonality, calendar effects, meteorological parameters, and participant characteristics.We found delayed associations between PM2.5 or ozone and changes in metabolite levels of the glycine-ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with mitochondrial dysfunction. The strongest association was seen for an increase of 8.1 μg/m3 in PM2.5 with a lag of one day and decreased mean glycine concentrations (− 2.5% [95% confidence interval: − 3.8%; − 1.2%]).ConclusionsShort-term exposures to ambient PM2.5 and ozone is associated with changes in plasma concentrations of metabolites in a cohort of cardiac catheterization patients. Our findings might help to understand the link between air pollution and cardiovascular disease.  相似文献   

7.
BackgroundEpidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses.ObjectivesTo investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects.MethodsIn total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter < 10 μm (PM10) and < 2.5 μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass.ResultsA 5 ng/m3 increase in PM2.5 copper and a 500 ng/m3 increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10 ng/m3 increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5.ConclusionsLong-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.  相似文献   

8.
ObjectiveEstimate the health risks and benefits of mode shifts from car to cycling and public transport in the metropolitan area of Barcelona, Spain.MethodsWe conducted a health impact assessment (HIA), creating 8 different scenarios on the replacement of short and long car trips, by public transport or/and bike. The primary outcome measure was all-cause mortality and change in life expectancy related to two different assessments: A) the exposure of travellers to physical activity, air pollution to particulate matter < 2.5 μm (PM2.5), and road traffic fatality; and B) the exposure of general population to PM2.5, modelling by Barcelona Air-Dispersion Model. The secondary outcome was a change in emissions of carbon dioxide.ResultsThe annual health impact of a shift of 40% of the car trips, starting and ending in Barcelona City, to cycling (n = 141,690) would be for the travellers who shift modes 1.15 additional deaths from air pollution, 0.17 additional deaths from road traffic fatality and 67.46 deaths avoided from physical activity resulting in a total of 66.12 deaths avoided. Fewer deaths would be avoided annually if half of the replaced trips were shifted to public transport (43.76 deaths). The annual health impact in the Barcelona City general population (n = 1,630,494) of the 40% reduction in car trips would be 10.03 deaths avoided due to the reduction of 0.64% in exposure to PM2.5. The deaths (including travellers and general population) avoided in Barcelona City therefore would be 76.15 annually. Further health benefits would be obtained with a shift of 40% of the car trips from the Greater Barcelona Metropolitan which either start or end in Barcelona City to public transport (40.15 deaths avoided) or public transport and cycling (98.50 deaths avoided).The carbon dioxide reduction for shifting from car to other modes of transport (bike and public transport) in Barcelona metropolitan area was estimated to be 203,251 t/CO2 emissions per year.ConclusionsInterventions to reduce car use and increase cycling and the use of public transport in metropolitan areas, like Barcelona, can produce health benefits for travellers and for the general population of the city. Also these interventions help to reduce green house gas emissions.  相似文献   

9.
Exposure to air pollution has been shown to cause insulin resistance in mice. To determine the relevance to humans, we tested the association between daily air pollution concentrations and daily hospitalization for acute serious complications of diabetes, coma and ketoacidosis, in Santiago between 2001 and 2008, using generalized linear models with natural splines to control for long term trends.For an interquartile range (IQR) increase in air pollutant, the relative risks (95% CI) of hospitalization for diabetes were: 1.15 (1.10, 1.20) for carbon monoxide (IQR = 1.00); 1.07 (0.98, 1.16) for ozone (IQR = 63.50); 1.14 (1.06, 1.22) for sulfur dioxide (IQR = 5.88); 1.12(1.05, 1.20) for nitrogen dioxide (IQR = 27.94); 1.11 (1.07, 1.15) for particulate matter  10 μm diameter(IQR = 34.00); and 1.11 (1.06, 1.16) for fine particulate matter ≤ 2.5 μm diameter (IQR = 18.50). Results were similar when stratified by age, sex and season. Air pollution appears to increase the risk of acute complications of diabetes requiring hospitalization, suggesting that improvements in air quality may reduce morbidity from diabetes.  相似文献   

10.
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~ 16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.  相似文献   

11.
BackgroundStudies measuring health effects of Saharan dust based on large particulate matter (PM) fraction groups may be masking some effects. Long distant transport reduces the amount of heavier and larger particles in the Saharan air masses increasing the relative contribution of smaller particles that may be more innocuous. This study investigates the association between different PM fractions and daily mortality during Saharan and non-Saharan days in Barcelona, Spain.MethodsWe collected daily PM1, PM2.5–1 and PM10–2.5 fractions, and cause-specific mortality (cardiovascular, respiratory and cerebrovascular) between March 2003 and December 2007. Changes of effects between Saharan and non-Saharan dust days were assessed using a time-stratified case–crossover design.ResultsDuring non-Saharan dust days we found statistically significant (p < 0.05) effects of PM10–2.5 for cardiovascular (odds ratio for increase of an interquartile range, OR = 1.033, 95% confidence interval: 1.006–1.060) and respiratory mortality (OR = 1.044, 95% CI: 1.001–1.089). During Saharan dust days strongest cardiovascular effects were found for the same fraction (OR = 1.085, 95% CI: 1.017–1.158) with an indication of effect modification (p = 0.111). Effects of PM2.5–1 during Saharan dust days were about the double than in non-dust days for cardiovascular and respiratory mortality, but these differences were not statistically significant.ConclusionOur results using independent fractions of PMs provide further evidence that the effects of short-term exposure to PM during Saharan dust days are associated with both cardiovascular and respiratory mortality. A better understanding of which of the different PM size fractions brought by Saharan dust is more likely to accelerate adverse effects may help better understand mechanisms of toxicity.  相似文献   

12.
Exposure to air pollution has been related with the most varied adverse health outcomes. This study aims to assess the impact of air pollution on the emergency hospitalization for respiratory disease in Rio de Janeiro, Brazil. The study was divided in two parts: Part I specifically addressing the air pollution assessment and Part II addressing the health assessment. Accordingly, this Part I aims to: i) evaluate the concentrations of PM10, SO2 and CO at two sites in Rio de Janeiro and compare them; ii) analyse the concentrations observed according to the national and international standards; and iii) analyse the air pollutants behaviour, namely, annually, seasonally, daily and considering weekdays/weekends variations. The pollutant concentrations were measured at two different sites in Rio de Janeiro and the analysis was performed for the period between September 2000 and December 2005. Results showed that PM10 concentrations in Rio de Janeiro exceeded the daily and annual standards imposed by the European Union, the Brazilian legislation and WHO guidelines. Regarding SO2 and CO, concentrations were, generally, below both European and Brazilian standards. Nevertheless, considering WHO guidelines, SO2 threshold for daily concentrations (20 μg m 3) was exceeded around 150 times. Behaviour assessment showed that the influence of traffic is a major factor affecting the air pollution in Rio de Janeiro.Considering the results achieved and the proven health effects of air pollution, strategies should be defined for its reduction, particularly concerning particulate matter, and consequently contribute to the protection of public health.  相似文献   

13.
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤ 2.5 or 10 μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2 days before) and chronic (365 days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n = 894) of the children (n = 310) reflected slower Stroop Test (p = 0.05) and Digit-Symbol Test (p = 0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087 s (SE: ± 0.034; p = 0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45 ± 3.47 msec; p = 0.007) and Stroop Tests (59.9 ± 26.5 msec; p = 0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.  相似文献   

14.
Primary Biologic Atmospheric Particles (PBAPs) constitute an interesting and poorly investigated component of the atmospheric aerosol. We have developed and validated a method for evaluating the contribution of overall PBAPs to the mass concentration of atmospheric particulate matter (PM). The method is based on PM sampling on polycarbonate filters, staining of the collected particles with propidium iodide, observation at epifluorescence microscope and calculation of the bioaerosol mass using a digital image analysis software. The method has been also adapted to the observation and quantification of size-segregated aerosol samples collected by multi-stage impactors.Each step of the procedure has been individually validated. The relative repeatability of the method, calculated on 10 pairs of atmospheric PM samples collected side-by-side, was 16%.The method has been applied to real atmospheric samples collected in the vicinity of Rome, Italy. Size distribution measurements revealed that PBAPs was mainly in the coarse fraction of PM, with maxima in the range 5.6–10 μm. 24-h samples collected during different period of the year have shown that the concentration of bioaerosol was in the range 0.18–5.3 μg m 3 (N = 20), with a contribution to the organic matter in PM10 in the range 0.5–31% and to the total mass concentration of PM10 in the range 0.3–18%.The possibility to determine the concentration of total PBAPs in PM opens up interesting perspectives in terms of studying the health effects of these components and of increasing our knowledge about the composition of the organic fraction of the atmospheric aerosol.  相似文献   

15.
IntroductionLong-term exposure to air pollution (AP) has been shown to have an impact on mortality in numerous countries, but since 2005 no data exists for France.ObjectivesWe analyzed the association between long-term exposure to air pollution and mortality at the individual level in a large French cohort followed from 1989 to 2013.MethodsThe study sample consisted of 20,327 adults working at the French national electricity and gas company EDF-GDF. Annual exposure to PM10, PM10–2.5, PM2.5, NO2, O3, SO2, and benzene was assessed for the place of residence of participants using a chemistry-transport model and taking residential history into account. Hazard ratios were estimated using a Cox proportional-hazards regression model, adjusted for selected individual and contextual risk factors. Hazard ratios were computed for an interquartile range (IQR) increase in air pollutant concentrations.ResultsThe cohort recorded 1967 non-accidental deaths. Long-term exposures to baseline PM2.5, PM10-25, NO2 and benzene were associated with an increase in non-accidental mortality (Hazard Ratio, HR = 1.09; 95% CI: 0.99, 1.20 per 5.9 μg/m3, PM10-25; HR = 1.09;95% CI: 1.04, 1.15 per 2.2 μg/m3, NO2: HR = 1.14; 95% CI: 0.99, 1.31 per 19.3 μg/m3 and benzene: HR = 1.10; 95% CI: 1.00, 1.22 per 1.7 μg/m3).The strongest association was found for PM10: HR = 1.14; 95% CI: 1.05, 1.25 per 7.8 μg/m3. PM10, PM10-25 and SO2 were associated with non-accidental mortality when using time varying exposure. No significant associations were observed between air pollution and cardiovascular and respiratory mortality.ConclusionLong-term exposure to fine particles, nitrogen dioxide, sulfur dioxide and benzene is associated with an increased risk of non-accidental mortality in France. Our results strengthen existing evidence that outdoor air pollution is a significant environmental risk factor for mortality. Due to the limited sample size and the nature of our study (occupational), further investigations are needed in France with a larger representative population sample.  相似文献   

16.
BackgroundElevated temperature and air pollution have been associated with increased mortality. Exposure to heat and air pollution, as well as the density of vulnerable groups varies within cities. The objective was to investigate the extent of neighbourhood differences in mortality risk due to heat and air pollution in a city with a temperate maritime climate.MethodsA case-crossover design was used to study associations between heat, air pollution and mortality. Different thermal indicators and air pollutants (PM10, NO2, O3) were reconstructed at high spatial resolution to improve exposure classification. Daily exposures were linked to individual mortality cases over a 15 year period.ResultsSignificant interaction between maximum air temperature (Tamax) and PM10 was observed. During “summer smog” days (Tamax > 25 °C and PM10 > 50 μg/m3), the mortality risk at lag 2 was 7% higher compared to the reference (Tamax 15 °C and PM10 15 μg/m3). Persons above age 85 living alone were at highest risk.ConclusionWe found significant synergistic effects of high temperatures and air pollution on mortality. Single living elderly were the most vulnerable group. Due to spatial differences in temperature and air pollution, mortality risks varied substantially between neighbourhoods, with a difference up to 7%.  相似文献   

17.
BackgroundThe underlying intermediate mechanisms about the association between fine particulate matter (PM2.5) air pollution and blood pressure (BP) were unclear. Few epidemiological studies have explored the potential mediation effects of angiotensin-converting enzyme (ACE) and its DNA methylation.MethodsWe designed a longitudinal panel study with 4 follow-ups among 36 healthy college students in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal real-time exposure to PM2.5, serum ACE level, and blood methylation of ACE gene and the repetitive elements. We applied linear mixed-effects models to examine the effects of PM2.5 on ACE protein, DNA methylation and BP markers. Furthermore, we conducted mediation analyses to evaluate the potential pathways.ResultsAn interquartile range increase (26.78 μg/m3) in 24-h average exposure to PM2.5 was significantly associated with 1.12 decreases in ACE average methylation (%5mC), 13.27% increase in ACE protein, and increments of 1.13 mmHg in systolic BP, 0.66 mmHg in diastolic BP and 0.82 mmHg in mean arterial pressure. ACE hypomethylation mediated 11.78% (P = 0.03) of the elevated ACE protein by PM2.5. Increased ACE protein accounted for 3.90 ~ 13.44% (P = 0.35 ~ 0.68) of the elevated BP by PM2.5. Repetitive-element methylation was also decreased but did not significantly mediate the association between PM2.5 and BP.ConclusionsThis investigation provided strong evidence that short-term exposure to PM2.5 was significantly associated with BP, ACE protein and ACE methylation. Our findings highlighted a possible involvement of ACE and ACE methylation in the effects of PM2.5 on elevating BP.  相似文献   

18.
Systematic characterization of morphological, mineralogical, chemical and toxicological properties of various size fractions of the atmospheric particulate matter was a main focus of this study together with an assessment of the human health risks they pose. Even though near-ground atmospheric aerosols have been a subject of intensive research in recent years, data integrating chemical composition of particles and health risks are still scarce and the particle size aspect has not been properly addressed yet. Filling this gap, however, is necessary for reliable risk assessment. A high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts. Finally, the risk level for inhalation exposure associated to the carcinogenic character of the studied PAHs has been assessed. The finest fraction (< 0.45 μm) exhibited the highest mass, highest active surface, highest amount of associated PAHs and also highest direct and indirect genotoxic potentials in our model air sample. Risk assessment of inhalation scenario indicates the significant cancer risk values in PM 1.5 size fraction. This presented new approach proved to be a useful tool for human health risk assessment in the areas with significant levels of air dust concentration.  相似文献   

19.
BackgroundFew studies have examined the link between air pollution exposure and behavioural problems and learning disorders during late childhood and adolescence.ObjectivesTo determine whether traffic-related air pollution exposure is associated with hyperactivity/inattention, dyslexia and dyscalculia up to age 15 years using the German GINIplus and LISAplus birth cohorts (recruitment 1995–1999).MethodsHyperactivity/inattention was assessed using the German parent-completed (10 years) and self-completed (15 years) Strengths and Difficulties Questionnaire. Responses were categorized into normal versus borderline/abnormal. Parent-reported dyslexia and dyscalculia (yes/no) at age 10 and 15 years were defined using parent-completed questionnaires. Individual-level annual average estimates of nitrogen dioxide (NO2), particulate matter (PM)10 mass, PM2.5 mass and PM2.5 absorbance concentrations were assigned to each participant's birth, 10 year and 15 year home address. Longitudinal associations between the air pollutants and the neurodevelopmental outcomes were assessed using generalized estimation equations, separately for both study areas, and combined in a random-effects meta-analysis. Odds ratios and 95% confidence intervals are given per interquartile range increase in pollutant concentration.ResultsThe prevalence of abnormal/borderline hyperactivity/inattention scores and parental-reported dyslexia and dyscalculia at 15 years of age was 12.9%, 10.5% and 3.4%, respectively, in the combined population (N = 4745). In the meta- analysis, hyperactivity/inattention was associated with PM2.5 mass estimated to the 10 and 15 year addresses (1.12 [1.01, 1.23] and 1.11 [1.01, 1.22]) and PM2.5 absorbance estimated to the 10 and 15 year addresses (1.14 [1.05, 1.25] and 1.13 [1.04, 1.23], respectively).ConclusionsWe report associations suggesting a potential link between air pollution exposure and hyperactivity/inattention scores, although these findings require replication.  相似文献   

20.
Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) ‘supersites’ at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the ‘chemical climate’ associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM.At Harwell the mean (± 1 sd) 2010–2013 annual average concentrations were PM10 = 16.4 ± 1.4 μg m 3 and PM2.5 = 11.9 ± 1.1 μg m 3 and at Auchencorth PM10 = 7.4 ± 0.4 μg m 3 and PM2.5 = 4.1 ± 0.2 μg m 3. The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5–15 μg m 3 for PM10 and PM2.5 at Harwell and 5–10 μg m 3 for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations – the secondary inorganic aerosol components, specifically NO3 – were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号