首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrabromobisphenol A (TBBPA) and eight bisphenol analogues (BPs) including bisphenol A (BPA) were determined in 388 indoor (including homes and microenvironments) dust samples collected from 12 countries (China, Colombia, Greece, India, Japan, Kuwait, Pakistan, Romania, Saudi Arabia, South Korea, U.S., and Vietnam). The concentrations of TBBPA and sum of eight bisphenols (ƩBPs) in dust samples ranged from < 1 to 3600 and from 13 to 110,000 ng/g, respectively. The highest TBBPA concentrations in house dust were found in samples from Japan (median: 140 ng/g), followed by South Korea (84 ng/g) and China (23 ng/g). The highest ∑ BPs concentrations were found in Greece (median: 3900 ng/g), Japan (2600 ng/g) and the U.S. (2200 ng/g). Significant variations in BPA concentrations were found in dust samples collected from various microenvironments in offices and homes. Concentrations of TBBPA in house dust were significantly correlated with BPA and ∑ BPs. Among the nine target chemicals analyzed, BPA was the predominant compound in dust from all countries. The proportion of TBBPA in sum concentrations of nine phenolic compounds analyzed in this study was the highest in dust samples from China (27%) and the lowest in Greece (0.41%). The median estimated daily intake (EDI) of ∑ BPs through dust ingestion was the highest in Greece (1.6–17 ng/kg bw/day), Japan (1.3–16) and the U.S. (0.89–9.6) for various age groups. Nevertheless, in comparison with the reported BPA exposure doses through diet, dust ingestion accounted for less than 10% of the total exposure doses in China and the U.S. For TBBPA, the EDI for infants and toddlers ranged from 0.01 to 3.4 ng/kg bw/day, and dust ingestion is an important pathway for exposure accounting for 3.8–35% (median) of exposure doses in China.  相似文献   

2.
This study investigates associations between serum concentrations of emerging and legacy halogenated flame retardants (HFRs) in 46 Norwegian women and measured indoor air and dust concentrations of the HFRs as well as detailed information on diet and household factors. Hexabromobenzene (median 0.03 ng/g lipid) and Dechlorane 602 (median 0.18 ng/g lipid) were detected in about 50% of the samples and Dechlorane Plus syn (median 0.45 ng/g lipid) and anti (median 0.85 ng/g lipid) in more than 78%. The most abundant polybrominated diphenyl ethers were 2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE-153; median 0.82 ng/g lipid) and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47; median 0.49 ng/g lipid) detected in more than 70% of the samples. In the bivariate analysis, no consistent associations were observed between the biomonitoring data and measured concentrations in indoor air and dust. On the other hand, consumption of specific food items (mainly lamb/mutton and margarine) correlated significantly with more than two HFR serum concentrations, while this was not the case for household factors (electronic appliances). Only the significant bivariate associations with diet were confirmed by multivariate linear regression analyses, which might indicate a higher contribution from food compared to the indoor environment to the variation of the body burden of these HFRs.  相似文献   

3.
We have evaluated the levels and specific profiles of several organohalogenated contaminants, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), novel brominated FRs (NBFRs), and organophosphate FRs (OPFRs), in 47 indoor dust samples collected in 2010 from urban locations from Iasi, Eastern Romania. The dominant contaminants found in the samples were OPFRs (median sum OPFRs 7890 ng/g). Surprisingly, OCPs were also measured at high levels (median 1300 ng/g). Except for BDE 209 (median 275 ng/g), PBDEs were present in dust samples at relatively low levels (median sum PBDEs 8 ng/g). PCBs were also measured at low levels (median sum PCBs 35 ng/g), while NBFRs were only occasionally detected, showing a low usage in goods present on the Romanian market. The results of the present study evidence the existence of a multitude of chemical formulations in indoor dust. FRs are usually associated to human exposure via ingestion of dust, but other chemicals, such as OCPs, are not commonly reported in such matrix. Although OCPs were found at comparable levels with OPFRs in Romanian dust, OCPs possess a higher risk to human health due to their considerably lower reference dose (RfD) values. Indeed, the OCP exposure calculated for various intake scenarios was only 2-fold lower than the corresponding RfD. Therefore, the inclusion of OCPs as target chemicals in the indoor environment becomes important for countries where elevated levels in other environmental compartments have been previously shown.  相似文献   

4.
Phthalates have been used for decades in large quantities, leading to the ubiquitous exposure of the population.In an investigation of 63 German daycare centers, indoor air and dust samples were analyzed for the presence of 10 phthalate diesters. Moreover, 10 primary and secondary phthalate metabolites were quantified in urine samples from 663 children attending these facilities. In addition, the urine specimens of 150 children were collected after the weekend and before they went to daycare centers.Di-isobutyl phthalate (DiBP), dibutyl phthalate (DnBP), and di-2-ethylhexyl phthalate (DEHP) were found in the indoor air, with median values of 468, 227, and 194 ng/m3, respectively. In the dust, median values of 888 mg/kg for DEHP and 302 mg/kg for di-isononyl phthalate (DiNP) were observed. DnBP and DiBP were together responsible for 55% of the total phthalate concentration in the indoor air, whereas DEHP and DiNP were responsible for 70% and 24% of the total phthalate concentration in the dust.Median concentrations in the urine specimens were 44.7 μg/l for the DiBP monoester, 32.4 μg/l for the DnBP monoester, and 16.5 μg/l and 17.9 μg/l for the two secondary DEHP metabolites. For some phthalates, we observed significant correlations between their concentrations in the indoor air and dust and their corresponding metabolites in the urine specimens using bivariate analyses. In multivariate analyses, the concentrations in dust were not associated with urinary metabolite excretion after controlling for the concentrations in the indoor air.The total daily “high” intake levels based on the 95th percentiles calculated from the biomonitoring data were 14.1 μg/kg b.w. for DiNP and 11.9 μg/kg b.w. for DEHP. Compared with tolerable daily intake (TDI) values, our “high” intake was 62% of the TDI value for DiBP, 49% for DnBP, 24% for DEHP, and 9% for DiNP. For DiBP, the total daily intake exceeded the TDI value for 2.4% of the individuals. Using a cumulative risk-assessment approach for the sum of DEHP, DnBP, and DiBP, 20% of the children had concentrations exceeding the hazard index of one. Therefore, a further reduction of the phthalate exposure of children is needed.  相似文献   

5.
We aimed to characterize levels of polyfluorinated compounds (PFCs) in indoor dust from offices, homes, and vehicles; to investigate factors that may affect PFC levels in dust; and to examine the associations between PFCs in dust and office workers' serum. Dust samples were collected in 2009 from offices, homes, and vehicles of 31 individuals in Boston, MA and analyzed for nineteen PFCs, including perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), fluorotelomer alcohols (FTOHs), and sulfonamidoethanols (FOSEs). Serum was collected from each participant and analyzed for eight PFCs including PFOA and PFOS. Perfluorononanoate, PFOA, perfluoroheptanoate, perfluorohexanoate, PFOS and 8:2 FTOH had detection frequencies > 50% in dust from all three microenvironments. The highest geometric mean concentration in office dust was for 8:2 FTOH (309 ng/g), while PFOS was highest in homes (26.9 ng/g) and vehicles (15.8 ng/g). Overall, offices had the highest PFC concentrations, particularly for longer-chain carboxylic acids and FTOHs. Perfluorobutyrate was prevalent in homes and vehicles, but not offices. PFOA serum concentrations were not associated with PFC dust levels after adjusting for PFC concentrations in office air. Dust concentrations of most PFCs are higher in offices than in homes and vehicles. However, indoor dust may not be a significant source of exposure to PFCs for office workers. This finding suggests that our previously published observation of an association between FTOH concentrations in office air and PFOA concentrations in office workers was not due to confounding by PFCs in dust.  相似文献   

6.
This review summarizes the published literature on the presence of polycyclic aromatic hydrocarbons (PAH) in indoor air, settled house dust, and food, and highlights geographical and temporal trends in indoor PAH contamination. In both indoor air and dust, ΣPAH concentrations in North America have decreased over the past 30 years with a halving time of 6.7 ± 1.9 years in indoor air and 5.0 ± 2.3 years in indoor dust. In contrast, indoor PAH concentrations in Asia have remained steady. Concentrations of ΣPAH in indoor air are significantly (p < 0.01) higher in Asia than North America. In studies recording both vapor and particulate phases, the global average concentration in indoor air of ΣPAH excluding naphthalene is between 7 and 14,300 ng/m3. Over a similar period, the average ΣPAH concentration in house dust ranges between 127 to 115,817 ng/g. Indoor/outdoor ratios of atmospheric concentrations of ΣPAH have declined globally with a half-life of 6.3 ± 2.3 years. While indoor/outdoor ratios for benzo[a]pyrene toxicity equivalents (BaPeq) declined in North America with a half-life of 12.2 ± 3.2 years, no significant decline was observed when data from all regions were considered. Comparison of the global database, revealed that I/O ratios for ΣPAH (average = 4.3 ± 1.3), exceeded significantly those of BaPeq (average = 1.7 ± 0.4) in the same samples. The significant decline in global I/O ratios suggests that indoor sources of PAH have been controlled more effectively than outdoor sources. Moreover, the significantly higher I/O ratios for ΣPAH compared to BaPeq, imply that indoor sources of PAH emit proportionally more of the less carcinogenic PAH than outdoor sources. Dietary exposure to PAH ranges from 137 to 55,000 ng/day. Definitive spatiotemporal trends in dietary exposure were precluded due to relatively small number of relevant studies. However, although reported in only one study, PAH concentrations in Chinese diets exceeded those in diet from other parts of the world, a pattern consistent with the spatial trends observed for concentrations of PAH in indoor air. Evaluation of human exposure to ΣPAH via inhalation, dust and diet ingestion, suggests that while intake via diet and inhalation exceeds that via dust ingestion; all three pathways contribute and merit continued assessment.  相似文献   

7.
Polybrominated diphenyl ethers (PBDEs) are present in many consumer goods. There is evidence that PBDEs are toxic to humans, particular young children. The purpose of this study was to assess indoor dust as an exposure source for PBDEs. Concentrations of 16 PBDEs were determined in dust samples from 33 households in New Zealand, and in breast milk samples from 33 mothers living in these households. Associations between dust and breast milk PBDE concentrations were assessed, and children's PBDE intake from breast milk and dust estimated. Influences of household and demographic factors on PBDE concentrations in dust were investigated. Indoor dust concentrations ranged from 0.1 ng/g for BDE17 to 2500 ng/g for BDE209. Breast milk concentrations were positively correlated (p < 0.05) with mattress dust concentrations for BDE47, BDE153, BDE154, and BDE209 and with floor dust for BDE47, BDE183, BDE206, and BDE209. The correlation for BDE209 between dust and breast milk is a novel finding. PBDE concentrations in floor dust were lower from households with new carpets. The estimated children's daily intake of PBDEs from dust and breast milk was below U.S. EPA Reference Dose values. The study shows that dust is an important human exposure source for common PBDE formulations in New Zealand.  相似文献   

8.
Several classes of flame retardants, such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate flame retardants (PFRs), together with polychlorinated biphenyls (PCBs) were measured in indoor dust from five villages located in three e-waste recycling regions in Guangdong Province, South China. The medians of PBDEs, NBFRs, and PFRs in dust in five sites ranged from 685–67,500, 1460–50,010, and 2180–29,000 ng/g, respectively. These concentrations were much higher than the medians of PCBs (52–2900 ng/g). BDE 209 and decabromodiphenyl ethane (DBDPE) were the two major halogen flame retardants in dust, while tris-(1-chloro-2-propyl) phosphate (TCIPP) and triphenyl phosphate (TPHP) were the major PFRs. Principle component analysis revealed the different pollutant patterns among different sites. The estimated median human exposures of PBDEs, NBFRs, PFRs, and PCBs via dust ingestion were 1.1–24.1, 0.73–20.3, 1.36–23.5, and 0.04–0.93 ng/kg bw/day for adults, and 16.2–352, 10.7–296, 19.9–343, 0.05–0.61, 0.65–13.6 ng/kg bw/day for toddlers, respectively. Residents from Site 5 had the highest exposure (95 percentile levels and high dust ingestion for toddlers) of PBDEs (3920 ng/kg bw/day), NBFRs (3200 ng/kg bw/day), and PFRs (5280 ng/kg bw/day). More attention should be paid to the contamination with NBFRs and PFRs, instead of PCBs, in these e-waste recycling regions, and local public health threat from PBDE alternatives should remain of concern. To the best of our knowledge, this is the first study on human exposure assessment of PFRs at e-waste sites.  相似文献   

9.
Indoor pesticide exposure is a growing concern, particularly for pyrethroids, a commonly used class of pesticides. Pyrethroid concentrations may be especially high in homes of immigrant farm worker families, who often live in close proximity to agricultural fields and are faced with poor housing conditions, potentially causing high pest infestation and pesticide use. We investigate levels of pyrethroids in the house dust of farm worker family homes in a study of mothers and children living in Mendota, CA, within the population-based Mexican Immigration to California: Agricultural Safety and Acculturation (MICASA) Study. We present pesticide use data and levels of pyrethroid pesticides in indoor dust collected in 2009 as measured by questionnaires and a GC/MS analysis of the pyrethroids cis- and trans-permethrin, cypermethrin, deltamethrin, esfenvalerate and resmethrin in single dust samples collected from 55 households. Cis- and trans-permethrin had the highest detection frequencies at 67%, with median concentrations of 244 and 172 ng/g dust, respectively. Cypermethrin was detected in 52% of the homes and had a median concentration of 186 ng/g dust. Esfenvalerate, resmethrin and deltamethrin were detected in less than half the samples. We compared the pyrethroid concentrations found in our study to other studies looking at both rural and urban homes and daycares. Lower detection frequencies and/or lower median concentrations of cis- and trans-permethrin and cypermethrin were observed in our study as compared to those studies. However, deltamethrin, esfenvalerate and resmethrin were detected more frequently in the house dust from our study than in the other studies. Because households whose children had higher urinary pyrethroid metabolite levels were more likely to be analyzed in this study, a positive bias in our estimates of household pyrethroid levels may be expected. A positive association was observed with reported outdoor pesticide use and cypermethrin levels found in the indoor dust samples (rs = 0.28, p = 0.0450). There was also a positive association seen with summed pyrethroid levels in house dust and the results of a pesticide inventory conducted by field staff (rs = 0.32, p = 0.018), a potentially useful predictor of pesticide exposure in farm worker family homes. Further research is warranted to fully investigate the utility of such a measure.  相似文献   

10.
Increased use of flame-retardants in office furniture may increase exposure to PBDEs in the office environment. However, partitioning of PBDEs within the office environment is not well understood. Our objectives were to examine relationships between concurrent measures of PBDEs in office air, floor dust, and surface wipes.We collected air, dust, and surface wipe samples from 31 offices in Boston, MA. Correlation and linear regression were used to evaluate associations between variables. Geometric mean (GM) concentrations of individual BDE congeners in air and congener specific octanol–air partition coefficients (Koa) were used to predict GM concentrations in dust and surface wipes and compared to the measured concentrations.GM concentrations of PentaBDEs in office air, dust, and surface wipes were 472 pg/m3, 2411 ng/g, and 77 pg/cm2, respectively. BDE209 was detected in 100% of dust samples (GM = 4202 ng/g), 93% of surface wipes (GM = 125 pg/cm2), and 39% of air samples. PentaBDEs in dust and air were moderately correlated with each other (r = 0.60, p = 0.0003), as well as with PentaBDEs in surface wipes (r = 0.51, p = 0.003 for both dust and air). BDE209 in dust was correlated with BDE209 in surface wipes (r = 0.69, p = 0.007). Building (three categories) and PentaBDEs in dust were independent predictors of PentaBDEs in both air and surface wipes, together explaining 50% (p = 0.0009) and 48% (p = 0.001) of the variation respectively. Predicted and measured concentrations of individual BDE congeners were highly correlated in dust (r = 0.98, p < 0.0001) and surface wipes (r = 0.94, p = 002). BDE209 provided an interesting test of this equilibrium partitioning model as it is a low volatility compound.Associations between PentaBDEs in multiple sampling media suggest that collecting dust or surface wipes may be a convenient method of characterizing exposure in the indoor environment. The volatility of individual congeners, as well as physical characteristics of the indoor environment, influence relationships between PBDEs in air, dust, and surface wipes.  相似文献   

11.
Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM2.5 levels (1.3 × 101 to 2.9 × 101 μg/m3 for indoor; 9.5 to 8.8 × 101 μg/m3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5 × 101 μg/m3). Indoor PM2.5 mass concentrations were correlated with outdoor PM2.5 in four of the kindergartens. The PBDEs (0.10–0.64 ng/m3 in PM2.5; 0.30–2.0 × 102 ng/g in dust) and DP (0.05–0.10 ng/m3 in PM2.5; 1.3–8.7 ng/g in dust) were detected in 100% of the PM2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by > 7-fold from 8.8 × 102 ng/m 3 to 6.7 × 103 ng/m 3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7 × 101 μg/m3 to 9.3 × 101 μg/m3 indoors and from 1.9 × 101 μg/m3 to 4.3 × 101 μg/m3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E  05 to 2.1E  04 indoors and from 1.9E  05 to 6.2E  05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments.  相似文献   

12.
Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust collected from UK living rooms (n = 32), cars (n = 21), school and child daycare centre classrooms (n = 28), and offices (n = 61). While concentrations were overall broadly within the range of those reported previously for North America, Japan, and other European countries, median concentrations of TCIPP in all UK microenvironments exceeded those reported elsewhere in the world. Moreover, concentrations of TCIPP and TDCIPP in 2 UK car dust samples were – at 370 μg g 1 and 740 μg g 1 respectively – amongst the highest reported globally in indoor dust to date. Consistent with this, concentrations of TDCIPP in dust from UK cars exceed significantly those detected in the other microenvironments studied. Concentrations of EHDPP were shown for the first time to be significantly higher in classroom dust than in samples from other microenvironments. When compared to concentrations of PBDEs determined previously in the classroom dust samples; concentrations of all target PFRs exceeded substantially those of those PBDEs that are the principal constituents of the Penta- and Octa-BDE formulations. Moreover, while mass-based concentrations of BDE-209 exceeded those of most of our target PFRs, they still fell below those of TCIPP and EHDPP. In line with a previous observation in Sweden that indoor air contamination with TNBP was significantly lower in newer buildings; concentrations of TNBP in classroom dust were significantly higher in older compared to more recently-constructed schools. Consistent with the reported extensive use of TCIPP and TDCIPP in polyurethane foam, the highest concentrations of both TCIPP and TDCIPP in the classrooms studied, were observed in rooms containing the highest numbers of foam chairs (n = 31 and 18 respectively). Exposure to PFRs of both adults and young children via ingestion of indoor dust was estimated. While even our high-end exposure estimate for young children was ~ 100 times lower than one previously reported health-based limit (HBLV) value for TCIPP; the margin of safety was only 5-fold when compared to another HBLV for this contaminant.  相似文献   

13.
Parabens are widely used as antimicrobial preservatives during pharmaceutical production. However, little information is available regarding the occurrence of parabens in commercial pharmaceuticals and their implications for human exposure. In this study, six commonly used parabens were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry with 100 commercial pharmaceuticals collected from China. Almost all of the pharmaceutical samples contained at least one kind of parabens with the detection frequency of 97%. The concentrations of Σ6parabens (sum of the six parabens) ranged from below MDL to 1256 ng/g, with mean and median values of 94.8 and 119 ng/g, respectively. Methyl paraben (MeP), ethyl paraben (EtP) and propyl paraben (PrP) were the predominant compounds. Significant positive correlation was observed between concentrations of MeP and PrP, indicating their co-applications in pharmaceuticals. Levels of Σ6parabens varied in different categories of pharmaceuticals and increased with their shelf lives. Based on the measured concentrations and daily ingestion rates of pharmaceuticals, the estimated daily intake (EDI) of parabens was calculated. The median values of EDIpharmaceutical for male adults, female adults and children were 4.05, 4.75 and 9.73 ng/kg-bw/day, respectively, which were three orders of magnitude lower than those from foodstuffs and personal care products (PCPs). It was firstly reported that the total exposure dose was 0.326 mg/kg-bw/day via foodstuffs, PCPs, and pharmaceuticals for Chinese female adults.  相似文献   

14.
In addition to dietary exposure, children are exposed to metals via ingestion of soils and indoor dust, contaminated by natural or anthropogenic outdoor and indoor sources. The objective of this nationwide study was to assess metal contamination of soils and dust which young French children are exposed to. A sample of 484 children (6 months to 6 years) was constituted in order to obtain representative results for young French children. In each home indoor settled dust was sampled by a wipe in up to five rooms. Outdoor playgrounds were sampled with a soil sample ring (n = 315) or with a wipe in case of hard surfaces (n = 53). As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V were measured because of their potential health concern due to soil and dust ingestion. The samples were digested with hydrochloric acid, and afterwards aqua regia in order to determine both leachable and total metal concentrations and loadings by mass spectrometry with a quadrupole ICP-MS. In indoor settled dust most (total) loadings were below the Limit of Quantification (LOQ), except for Pb and Sr, whose median loadings were respectively 9 and 10 μg/m². The 95th percentile of loadings were 2 μg/m² for As, < 0.8 for Cd, 18 for Cr, 49 for Cu, < 64 for Mn, 63 for Pb, 2 for Sb, 56 for Sr, and < 8 for V. Median/95th percentile of loadings in settled dust on outdoor playgrounds were 2/16, < 0.8/1.3, 17/53, 49/330, 99/424, 32/393, 2/13, 86/661 and 10/37 μg/m² for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. In outdoor playground soil median/95th percentile of concentrations (μg/g) were 8/26, < 0.65/1, 25/52, < 26/53,391/956, 27/254, 0.7/4, 54/295, 23/57 for As, Cd, Cr, Cu, Mn, Pb, Sb, Sr, and V respectively. These results are comparable with those observed in other countries. Because of their representative nature, we can assess children's exposures to these metals via soil and dust and the associated risks in urban and rural environments. Ratios of leachable/total concentrations and loadings, calculated on > LOQ measurements, differed among metals. To a lesser extent, they were also affected by type of matrix, with (except for Cd) a greater leachability of dust (especially indoor) compared to soils.  相似文献   

15.
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region.PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis.The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently.To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.  相似文献   

16.
Indoor and outdoor endotoxin in PM2.5 was measured for the very first time in Santiago, Chile, in spring 2012. Average endotoxin concentrations were 0.099 and 0.094 [EU/m3] for indoor (N = 44) and outdoor (N = 41) samples, respectively; the indoor–outdoor correlation (log-transformed concentrations) was low: R =  0.06, 95% CI: (− 0.35 to 0.24), likely owing to outdoor spatial variability.A linear regression model explained 68% of variability in outdoor endotoxins, using as predictors elemental carbon (a proxy of traffic emissions), chlorine (a tracer of marine air masses reaching the city) and relative humidity (a modulator of surface emissions of dust, vegetation and garbage debris). In this study, for the first time a potential source contribution function (PSCF) was applied to outdoor endotoxin measurements. Wind trajectory analysis identified upwind agricultural sources as contributors to the short-term, outdoor endotoxin variability. Our results confirm an association between combustion particles from traffic and outdoor endotoxin concentrations.For indoor endotoxins, a predictive model was developed but it only explained 44% of endotoxin variability; the significant predictors were tracers of indoor PM2.5 dust (Si, Ca), number of external windows and number of hours with internal doors open. Results suggest that short-term indoor endotoxin variability may be driven by household dust/garbage production and handling. This would explain the modest predictive performance of published models that use answers to household surveys as predictors. One feasible alternative is to increase the sampling period so that household features would arise as significant predictors of long-term airborne endotoxin levels.  相似文献   

17.
Dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCHs) are widely detected in the environment, although they have been banned in China since 1980s. To better understand the route-specific daily uptake of the pesticides by humans, a total of 322 food, dust, and air samples were collected in Shanghai, China, during 2008–2011. The median concentrations were 0.2–126.6 and 0.03–1.6 ng/g wet weight for DDTs (DDT and its metabolites) and HCHs, respectively, in different types of foods. The values in dust (indoors and outdoors) were 5.7–29.8 and 1.3–5.4 ng/g, and 13.9 × 10 3 and 2.6 × 10 3 ng/m3 in air (gas + particle) for DDTs and HCHs, respectively. The daily uptake of a pesticide by humans was calculated via the pesticide intake multiplied by its uptake efficiency. The uptake efficiencies of DDTs and HCHs in food through human intestines were estimated using bioaccessibility measured via an in vitro method simulating the human gastrointestinal digestion process. The total daily uptakes of DDTs and HCHs through three routes (i.e., ingestion, inhalation, and dermal contact) were 79.4 and 4.9 ng/day, respectively, for children, and 131.1 and 8.0 ng/day, respectively, for adults. Ingestion via food and dust was the main route of human exposure to the pesticides, and the daily uptake of the pesticides via food consumption accounted for 95.0–99.2% of the total.  相似文献   

18.
The temporal evolution of concentrations of α-, β-, and γ-hexabromocyclododecanes (HBCDs), and pentabromocyclododecenes (PBCDs — degradation products of HBCDs) was studied in separate aliquots of a well-homogenized indoor dust sample. These were: (a) exposed to natural light, and (b) kept in the dark. Results revealed a rapid photolytically-mediated shift from γ-HBCD to α-HBCD that was complete after 1 week of exposure, and a slower degradative loss of HBCDs via elimination of HBr. Under the specific conditions studied in this experiment, calculated half-lives (t1/2) showed the decay in ΣHBCDs concentration was faster in light-exposed samples (t1/2 = 12 weeks), than in light-shielded dust (t1/2 = 26 weeks). Within-room spatial and temporal variability in concentrations and diastereomer patterns were studied in six and three rooms respectively. While in some rooms, little variability was detected, in others it was substantial. In one room, concentrations of ΣHBCDs and the relative abundance of γ-HBCD declined dramatically with increasing distance from a TV. The same TV appears to have influenced strongly the temporal variation in that room; with higher concentrations observed in its presence and when the TV was moved closer to the area sampled. Significant negative correlation was observed in one room between concentrations of ΣHBCDs and dust loading (g dust m? 2 floor), implying “dilution” occurs at higher dust loadings.  相似文献   

19.
Perfluorinated compounds (PFCs), especially perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), are known to occur throughout the environment and in the human population (Houde et al., 2006). The occurrence of PFCs in human umbilical cord blood and human milk, coupled with the potential developmental toxicity of PFCs, suggests the need for determining the exposure sources and magnitudes of PFCs in infants. In this study, 10 PFCs were measured in 24 pooled samples consisting of 1237 individual human milk samples. The samples were collected from 12 provinces of China in 2007. PFOS and PFOA were the predominant PFCs found in all the samples tested. The geometric mean (GM) and median of the concentrations were 46 pg/mL and 49 pg/mL for PFOS, 46 pg/mL and 34.5 pg/mL for PFOA respectively. A large variation in geographical distribution was observed for PFCs in human milk. High concentrations of PFOA (814 pg/ml for the rural samples and 616 pg/ml for the urban samples) were found in human milk from Shanghai. Estimated dietary intakes (EDI) were established and the median, GM and the highest EDI of the total PFCs were 17.2 ng/kg/d, 17.8 ng/kg/d and 129.1 ng/kg/d respectively. The EDI for PFOA (88.4 ng/kg/d) for Shanghai was close to the tolerable daily intake (100 ng/kg/d) proposed by the German Federal Institute for Risk Assessment and the Drinking Water Commission. The results suggest both mothers and infants have a high exposure to PFCs in the Shanghai region. The potential health impact of postnatal exposure through breastfeeding to infants should therefore be comprehensively evaluated.  相似文献   

20.
Within-house and within-room spatial temporal variability in PBDE contamination of indoor dust may influence substantially the reliability of human exposure assessments based on single point samples, but have hitherto been little studied. This paper reports concentrations of PBDEs 17, 28, 47, 49, 66, 85, 99, 100, 153, and 154 in indoor dust samples (n = 112) from two houses in Birmingham, UK. To evaluate within-house spatial variability, four separate rooms were sampled in house 1 and two separate rooms sampled in house 2. Up to four different 1 m2 areas in the same room were sampled to evaluate within-room spatial variability, and for all studied areas, samples were taken for eight consecutive months to evaluate temporal and seasonal variability. Concentrations of ΣPBDEs in individual samples from house 1 varied between 21 and 280 ng g 1; while the range of concentrations in house 2 was 20–1000 ng g 1. This indicates that where and when a sample is taken in a house can influence substantially the contamination detected. In one room, concentrations of PBDEs in an area located close to putative PBDE sources exceeded substantially those in an area 2 m away, with marked differences also observed between two areas in another room. Substantial within-room spatial differences in PBDE concentrations were not discernible in the other rooms studied. Concentrations of PBDEs in the majority of rooms within the same houses were not markedly different between rooms. Nevertheless, large differences were observed between PBDE concentrations detected in two rooms in the same house in both houses studied. In one instance, this is hypothesised to be attributable to the presence of a carpet in one room and bare wooden floor in another, but firm conclusions cannot be drawn. Within-room temporal (month-to-month) variability was substantial (relative standard deviations for ΣPBDEs = 15–200%). In some rooms, the introduction and removal of putative sources like a TV and a bed, appeared to exert a discernible influence on PBDE concentrations. PBDE concentrations in spring and summer were not markedly different from those observed in autumn and winter. Possible dilution of PBDE concentrations in dust at higher dust loadings (g dust per m2 floor surface) was investigated in a small number of rooms, but no firm evidence of such dilution was evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号