首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract: This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration.  相似文献   

2.
Abstract: The purpose of this study was to validate the application of an invertebrate community index (ICI) to assess the biological integrity of urban streams. Validation involved comparing chemical and habitat data to ICI scores from 20 urban streams and four least‐impacted streams in the Choctawhatchee and Pea River watersheds located in Southeast Alabama. Chemical and habitat data were collected to support whether the ICI accurately predicts the health of the streams. A significant difference between urban and least‐impacted ICI scores, habitat evaluation scores, chemical variables, taxa richness, and Shannon‐Wiener diversity were observed when urban sites were compared with least‐impacted sites using Mann‐Whitney U‐test. Urban sites having low ICI scores, low species richness and diversity, and poor habitat showed greater impairment than least‐impacted sites. Cluster analysis of macroinvertebrate assemblages indicated two clusters. Significant differences between clusters in habitat evaluations, chemical parameters, and ICI scores showed that some urban sites were more degraded than other urban sites in the study. Differentiation between least‐impacted and urban sites indicated that the ICI provided valid biotic assessments. Therefore, this study validated that the ICI is capable of predicting the biological integrity of urban streams in the Choctawhatchee and Pea River watersheds.  相似文献   

3.
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape.  相似文献   

4.
    
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.  相似文献   

5.
    
ABSTRACT: Responses of the Wyoming Stream Integrity Index (WSII), a regionally calibrated multimetric index, were investigated in relation to background elevational changes in water quality and habitat conditions versus accelerated anthropogenic degradation at the watershed scale. Assessments were conducted for three rivers in southeast Wyoming: the Little Medicine Bow River, the Medicine Bow River, and Rock Creek. Pearson correlation coefficients and regression models related “core metrics” and index scores to elevational gradients of physicochemical variables. Velocity, substrate, and weighted habitat values were positively correlated to index scores, while suspended solids was negatively correlated. The exclusive dependence of index scores on physical variables specifies the type of environmental gradients the WSII is most robust in detecting. The individual “core metrics” Plecoptera taxa, Trichoptera taxa, percent Trichoptera without Hydropsychidae, and percent noninsects appeared most sensitive to physical changes and were thus driving associations between index scores and physical variables. Despite strong correlations with physical variables, anomalies existed where habitat conditions were good, unknown stressors existed, or gradients were naturally occurring despite “Poor” index scores (i.e., degraded stream conditions). Such findings illustrate the influence of regional variability on biotic indices and the importance of identifying sufficient reference and impaired stream reaches used to develop and calibrate multimetric indices relying on reference conditions.  相似文献   

6.
The Contribution of Headwater Streams to Biodiversity in River Networks1   总被引:1,自引:0,他引:1  
Abstract: The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. We review the diversity of taxa dependent on headwaters. Exemplifying this diversity are three unmapped headwaters that support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities, in part because of the predictability of dry periods. The influence of headwaters on downstream systems emerges from their attributes that meet unique habitat requirements of residents and migrants by: offering a refuge from temperature and flow extremes, competitors, predators, and introduced species; serving as a source of colonists; providing spawning sites and rearing areas; being a rich source of food; and creating migration corridors throughout the landscape. Degradation and loss of headwaters and their connectivity to ecosystems downstream threaten the biological integrity of entire river networks.  相似文献   

7.
    
Excess fine sediments in streambeds are among the most pervasive causes of degradation in streams of the United States. Simple criteria for acceptable streambed fines are elusive because streambed fines and biotic tolerances vary widely in the absence of human disturbances. In response to the need for sediment benchmarks that are protective of minimum aquatic life uses under the Clean Water Act, we undertook a case study using surveys of sediment, physical habitat, and macroinvertebrates from New Mexico streams. Our approach uses weight of evidence to develop suggested benchmarks for protective levels of surficial bedded sediments <0.06 mm (silt and finer) and <2.0 mm (sand and finer). We grouped streams into three ecoregions that were expected to produce similar naturally occurring streambed textures and patterns of response to human disturbances. Within ecoregions, we employed stressor response models to estimate fine sediment percentages and bed stability that are tolerated by resident macroinvertebrates. We then compared individual stream sediment data with distributions among least‐disturbed reference sites to determine deviation from natural conditions, accounting for natural variability across ecoregion, gradient, and drainage area. This approach for developing benchmark values could be applied more widely to provide a solid basis for developing bedded sediment criteria and other protective management strategies in other regions.  相似文献   

8.
    
Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.  相似文献   

9.
    
Several hypotheses, including habitat degradation and variation in fluvial geomorphology, have been posed to explain extreme spatial and temporal variation in Clinch River mollusk assemblages. We examined associations between mollusk assemblage metrics (richness, abundance, recruitment) and physical habitat (geomorphology, streambed composition, fish habitat, and riparian condition) at 10 sites selected to represent the range of current assemblage condition in the Clinch River. We compared similar geomorphological units among reaches, employing semi‐quantitative and quantitative protocols to characterize mollusk assemblages and a mix of visual assessments and empirical measurements to characterize physical habitat. We found little to no evidence that current assemblage condition was associated with 54 analyzed habitat metrics. When compared to other sites in the Upper Tennessee River Basin (UTRB) that once supported or currently support mollusk assemblages, Clinch River sites were more similar to each other, representing a narrower range of conditions than observed across the larger geographic extent of the UTRB. A post‐hoc analysis suggested stream size and average boundary shear stress at bankfull stage may have historically limited species richness in the UTRB (p < 0.001). Associations between mollusk assemblages and physical habitat in the UTRB and Clinch River currently appear obscured by other factors limiting richness, abundance, and recruitment.  相似文献   

10.
Multimetric indices of biotic integrity (IBIs) are commonly used to assess condition of stream fish assemblages, but their ability to monitor trends within streams over time is largely unknown. We assessed the trend detection ability of two IBI formulations (one with traditional scoring and metrics, and one with nontraditional scoring and region-specific metrics) and of similarity and diversity indices using simulations that progressively altered the fish assemblages of 39 streams in the United States mid-Atlantic Highlands region. We also assessed responses to simulated 50% variability in fish abundances, as a measure of background noise. Fish assemblage indices responded little to changes that affected all species proportionally despite substantial changes in total fish number. Assemblage indices responded better to scenarios that differentially affected fish species, either according to life history traits or by increasing dominance of already common species, but even these changes took some time to detect relative to background variability levels. Ordinations of stream fish assemblage data suggested that differences among sites were maintained even after substantial alterations of fish composition within sites. IBIs are designed to detect broad assemblage differences among sites while downplaying abundance changes and variability increases that were the first indications of within-site changes, and they appear more suited to detecting large departures from natural fish assemblages than for monitoring gradual changes such as those our simulations produced. Inferences about causes of assemblage changes should be made with caution because of correlations among species traits and interdependence among IBI component metrics. Site trend assessments should be made based on all available data rather than just by summary indices.  相似文献   

11.
    
Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.  相似文献   

12.
    
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

13.
采煤塌陷区的生态环境治理是生态环境保护的一项重要内容。当前,采煤塌陷区所在的地方政府已经采取了相关的生态修复措施,并建立了相应的管理机构,有了一定的法制建设进展。但与采煤塌陷区生态修复相关的管理机制尚存在不足,诸如管理主体欠缺、管理体制不顺、法治不健全等问题普遍存在。因此,需要在环境管理转型的要求下进一步完善。  相似文献   

14.
This study examined the relationship between environmental concern and ratings of acceptability of environmental impacts among visitors at two national park settings. Based on the concept of a social ecological paradigm shift, it was hypothesized that individuals with greater levels of environmental concern are less accepting of environmental impacts in national parks than individuals with lesser degrees of concern. Sample data came from Cape Lookout National Seashore (N=392) and Moores Creek National Battlefield (N=236), two national park units in the south-eastern U.S.A. Environmental concern was measured by the New Ecological Paradigm scale. Acceptability was measured by visitor responses to 25 items covering different types of environmental park impacts. Analysis of variance and Tukey's means comparison procedure were used to test for differences between groups defined by levels of environmental concern on impact acceptability. Significant relationships were found between environmental concern and 15 of the 25 specific impacts in the Cape Lookout sample and 13 significant relationships were found in the Moores Creek sample. However, the relationships between environmental concern and acceptability varied somewhat across the two samples. These findings suggested that individuals with greater environmental concern were less accepting (or tolerant) of certain types of park impacts, while individuals with lesser degrees of environmental concern were more accepting of certain park impacts. Differences across the study settings were attributed to the different orientations of park visitors between the two national park units and recency effects. While the data reported are preliminary, they should be informative for park management purposes, particularly in the determination of standards for park impacts.  相似文献   

15.
    
Golf is a major and expanding sport, leisure and tourism activity with significant environmental impacts. The impacts of golf and other sports facilities are increasingly addressed through Voluntary Environmental Programmes (VEPs). Since the late-1980s, VEPs have gained popularity because they theoretically overcome the weaknesses of environmental legislation, improve environmental performance beyond minimum legal compliance and confer competitive advantage. Yet their effectiveness is contested and they are only partially accepted. There is very limited research on the growing participation of golf and other sports in VEPs. Our international review paper outlines the environmental impacts of golf, analyses the strategic ‘green’ pressures affecting the sport, reviews the theory and practice of VEPs, and draws conclusions on this under-researched field.  相似文献   

16.
    
Watershed characteristics such as land‐use and land‐cover affect stream condition at multiple scales, but it is widely accepted that conditions in close proximity to the stream or survey site tend to have a stronger influence. Although spatially weighted watershed metrics have existed for years, nonspatial lumped landscape metrics (i.e., areal mean or percentage) are still widely used because relatively few technical skills are needed to implement them. The Inverse Distance Weighted Percent Land Use for Streams (IDW‐Plus) custom ArcGIS toolset provides the functionality to efficiently calculate six spatially explicit watershed metrics which account for the Euclidean or flow length distance to the stream or outlet, as well as the probability for overland runoff. These include four distance‐weighted metrics, those being inverse Euclidean distance to the stream or outlet, and the inverse flow length to the stream or outlet. Two tools are also included to generate hydrologically active (i.e., runoff potential), inverse flow length to the stream or outlet metrics. We demonstrate the tools using real data from Southeast Queensland, Australia. We also provide detailed instructions, so readers can recreate the examples themselves before applying the tools to their own data.  相似文献   

17.
/ In general, diadromous (and particularly amphidromous and catadromous) freshwater fishes decline in frequency of occurrence, change age/size structure, and probably also decline in abundance with increasing elevation and distance upstream from the sea. In freshwater fish faunas with a high proportion of migratory species, as in New Zealand, these changes in occurrence and abundance result in a breakdown of the relationship between fish abundance and habitat quality, making application of the index of biotic integrity (IBI) as a measure of habitat quality problematical since the index depends on the relationship between population metrics and habitat quality. An alternative approach applicable to assessing temporal changes in habitat quality and that uses a large database on fish distributions, involves analysis of the distribution of species across their natural distributions. In this paper we generate curves of occurrence of species across ranges of altitude and distance inland and show, through comparisons of data subsets, that the curves are consistent estimators of species' occurrence and therefore useful as indicators of habitat quality.  相似文献   

18.
    
States and tribes are encouraged to use multiple biological assemblages in assessment of water bodies. An assessment index for each assemblage provides information on aspects of the aquatic resource that may be unique in terms of stressor sensitivity, stressor type, or ecological scale. However, assessment results relative to impairment thresholds can disagree among indices for an individual water body, leading to uncertain overall water‐body assessments. We explored options for combining stream indices for macroinvertebrates, fish, and habitat in ways that would yield the most consistent and sensitive results relative to established disturbance categories. Methods varied in the scoring or rating scales used to standardize each index value, the thresholds used to define impairment of aquatic life uses, and the ways of synthesizing multiple indices. The index compositing method that scores each index on a continuous scale and averages the scores after standardizing had superior accuracy, sensitivity, and precision. In addition, using the 25th quantile of reference sites instead of the 10th quantile resulted in a more balanced error rate among reference and degraded site categories.  相似文献   

19.
    
Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.  相似文献   

20.
    
The World Bank is the single largest source of development finance, with wide-reaching influence. The Bank's safeguards aim to minimize the negative impacts of the projects it funds. These policies have recently been updated in a new Environmental and Social Framework. For conservation, the key changes include a mechanism for the use of biodiversity offsets and borrowers’ own frameworks to manage impacts. Concerns have been raised that these changes may weaken protections as there is substantial flexibility about when offsets or borrowers’ frameworks can be used, and uncertainty around the efficacy of offsets. The project-by-project nature of these mechanisms and the lack of clear criteria may also hinder future efforts to hold the Bank to account. Concerns about these changes were raised by conservation organizations during the consultation process, but the framework's formulation does not fully reflect recommendations made. Although elements of the new policy have the potential to benefit conservation, the flexibility presents a risk to biodiversity. It is vital for conservation organizations to engage effectively to ensure that any negative impacts arising do not go unchallenged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号