首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bow River Basin is a cornerstone of Alberta's development. In 2010, stakeholders representing interests from agriculture, municipalities, environment, and more formed the Bow River Project Research Consortium to help determine the potential for improving the operations in the basin. At present, upstream reservoirs are operated primarily for hydropower, whereas downstream reservoirs are operated for irrigation. Through Collaborative Modeling for Decision Support the stakeholders were able to develop a new method for operating the system that would dramatically improve environmental performance. The main components of the new operating strategy called for: purchase or setting aside of a small amount of storage volume in the power reservoirs; a set of rules for releases from that storage; an agreement by the major irrigation districts with the largest water licenses to utilize their ability to shift deliveries to and from their large offstream storage reservoirs to allow for increased instream flows, and to allow junior water license holders (mainly municipal and industrial supplies) an uninterrupted water supply; limitations of reservoir fluctuations to improve inreservoir habitat for fisheries; and increased minimum flows throughout the system leading to improved environmental outcomes. Costs of this strategy were minimal, impacts on power revenue were estimated at <US$2 million/yr on average. Compensatory arrangements should be possible.  相似文献   

2.
Providing environmental flows is increasingly a management obligation in many water resource systems. Evaluating the impacts of environmental flow alternatives on other water uses in a basin can be a challenge, especially when collaborating with stakeholders. We demonstrate the use of system dynamics (SD) modeling to assess the impacts of four environmental flow alternatives in the Rio Chama, New Mexico. The model was developed to examine impacts of each alternative on reservoir storage and releases, hydropower production and revenue, and whitewater boating access. We simulated each alternative within a stochastic framework in order to explicitly incorporate hydrologic uncertainty into the analyses. The environmental flow alternatives were developed at a collaborative workshop of geomorphology, hydrology, and ecology experts. Results from the model indicate that the proposed flow recommendations on the Rio Chama will generally decrease annual reservoir storage, increase median flows, and have minimal impacts on hydropower production and whitewater rafting on the system. The Rio Chama case study is a promising example of how SD modeling can be used in the early stages of environmental flow studies and why it is compatible with collaborative modeling.  相似文献   

3.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

4.
ABSTRACT: A severe sustained drought in the Colorado River Basin would cause economic damages throughout the Basin. An integrated hydrologic-economic-institutional model introduced here shows that consumptive water users in headwaters states are particularly vulnerable to very large shortfalls and hence large damages because their rights are effectively junior to downstream users. Chronic shortfalls to consumptive users relying on diversions in excess of rights under the Colorado River Compact are also possible. Nonconsumptive water uses (for hydropower and recreation) are severely affected during the worst drought years as instream flows are reduced and reservoirs are depleted. Damages to these uses exceeds those to consumptive uses, with the value of lost hydropower production the single largest economic impact of a severe sustained drought. Modeling of alternative policy responses to drought suggests three general policy approaches with particular promise for reducing damages. Consumptive use damages can be reduced by over 90 percent through reallocation from low to high valued uses and through reservoir storage strategies which minimize evaporation losses. Reservoir management to preserve minimum power pool levels for hydropower production (and to maintain reservoir recreation) may reduce damages to these nonconsumptive uses by over 30 percent, but it may increase consumptive use shortfalls.  相似文献   

5.
ABSTRACT: The use of reservoirs and land treatments to manage streamflow for the maintenance or enhancement of instream flow values is a valid concept. Historically, large reservoirs have been used for flood control and water-supply regulation. Smaller structures have enjoyed widespread use for soil and water conservation in headwater areas. Where reservoir releases can be controlled, it is technically feasible to regulate flows for the enhancement of instream values. However, institutional and political obstacles may preclude the operation of some reservoirs for this purpose. Retention and detention structures and land treatments, implemented for soil and water conservation purposes, have often had favorable effects on the streamflow hydrograph. Decreases in peak flows and increases in low flows have been documented. Design concepts for runoff-control structures are discussed in relation to instream flow management objectives. Hydro-logic simulation is offered as a potential tool for project design and feasibility analysis.  相似文献   

6.
随着一系列梯级水电站的建成运行,因上游电站泄水引起下游河道型水库水体中总溶解气体(TDG)过饱和,导致库区鱼类患气泡病甚至死亡的风险增加。针对河道型水库过饱和TDG释放预测问题,建立河道型水库的纵向一维过饱和TDG释放预测模型,研究不同洪水条件下河道型水库在变水位运行条件下的水动力学和过饱和TDG释放特性,分析了过饱和TDG沿程释放和代表性断面的TDG过程,探讨了横断面滩地区域的水深变化和鱼类补偿水深的满足性。结果表明降低来流的TDG水平是减小其不利影响的重要手段,在来流TDG饱和度一定时,河道型水库适当以高水位运行能够为滩地区域鱼类提供足够的躲避水深。本文结果对梯级电站优化调度以减缓TDG影响的研究和方案实施提供了技术支撑,在梯级水电开发河流的水生态保护方面具有重要意义。  相似文献   

7.
ABSTRACT: In‐reservoir thermal and ecological effects of releasing some flows over the surface spillway at Blue Mesa Reservoir, Colorado, rather than routing all releases through the hypolimnetic outlet were evaluated using a calibrated and validated one‐dimensional thermal model (CE‐THERM) with a set of ecological models. Thermal model output indicated that surface water temperatures were influenced primarily by atmospheric conditions, but the release of warmer water over the spillway resulted in a thinner epilimnion and cooler metalimnetic water temperatures. Ecological model predictions indicated that spillway releases and associated temperatures resulted in lower growth rates for young‐of‐year (YOY) kokanee salmon (Oncorhynchus nerka) in the reservoir by up to 9 percent when compared with growth rates under baseline operations with no releases over the spillway. Kokanee growth rates were reduced under spillway release scenarios because lower temperatures not only affected metabolic rates, but limited the productivity of the zooplankton as well. Thus, altering the release regime with spillway discharges could have deleterious effects on Blue Mesa's YOY kokanee. However, in other reservoirs, distributing discharges among different elevations may provide managers with a mechanism to regulate temperatures to benefit species of concern that are facing challenges imposed by environmental conditions such as global warming.  相似文献   

8.
ABSTRACT: This paper is concerned with finding an optimal allocation of water entitlements for each of two users of water who share a reservoir. Two instruments of allocation are considered. The first, release sharing, involves sharing the releases from the reservoir; the second, capacity sharing, is concerned with allocating to each user of water a share of inflows, reservoir capacity and leakage and evaporation losses. Stochastic dynamic programming problems of reservoir operation under each type of sharing arrangement are formulated. It is shown that the maximum discounted expected profit from reservoir operation over the life of the storage using capacity sharing is at least as large as that obtained using release sharing and that release sharing is not Pareto efficient.  相似文献   

9.
Regulated rivers in the United States are required to support human water uses while preserving aquatic ecosystems. However, the effectiveness of hydropower license requirements nationwide has not been demonstrated. One requirement that has become more common is “run-of-river” (ROR) operation, which restores a natural flow regime. It is widely believed that ROR requirements (1) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assumptions by reviewing hydropower projects with license-mandated changes from peaking to ROR operation. We found that ROR operation was often prescribed in states with strong water-quality certification requirements and migratory fish species. Although benefits to aquatic resources were frequently cited, changes were often motivated by other considerations. After controlling for climate, the overall change in annual generation efficiency across projects because of the change in operation was not significant. However, significant decreases were detected at one quarter of individual hydropower projects. As expected, we observed a decrease in flow during peak demand at 7 of 10 projects. At the remaining projects, diurnal fluctuations actually increased because of operation of upstream storage projects. The economic implications of these results, including both producer costs and ecologic benefits, are discussed. We conclude that regional-scale studies of hydropower regulation, such as this one, are long overdue. Public dissemination of flow data, license provisions, and monitoring data by way of on-line access would facilitate regional policy analysis while increasing regulatory transparency and providing feedback to decision makers.  相似文献   

10.
ABSTRACT: A reach of the Pecos River, located in eastern New Mexico, was examined to evaluate losses of river flows due to evaporation, seepage, and transpiration. An accurate assessment of the water losses along this reach is critical for determining how water rights are adjudicated for water users in the Pecos basin and interstate compact accounting. Water losses significantly impact flows through critical habitat for species protected under the Endangered Species Act. Daily losses of river flows were analyzed for the study reach that extends from immediately below the Pecos River confluence with Taiban Creek to the United States Geological Survey (USGS) gage near Acme. The analysis was completed with consideration for other processes including flood wave travel times and attenuation along with stream bank storage and returns. The analysis was completed using daily stream flow data from USGS gages located along the study reach. Empirical seasonal functions were developed to relate flow loss to the flow rate in the river. The functions were ultimately developed to provide a method for comparing the effects of different river flows on the available water supply.  相似文献   

11.
ABSTRACT: The Montana Department of Natural Resources and Conservation developed a hydrologic model to help analyze the effects of allocating water for consumptive and instream uses in the upper Missouri River basin of Montana. The model, a PC-based FORTRAN program, uses a mass-balance approach to compute monthly streamflows, reservoir operations, hydropower production, and irrigation and municipal water uses throughout the 54,000 square mile basin for a 59-year base period. Simulation results are presented as monthly mean and percentile-exceedence values. The model was run for baseline conditions and six hypothetical water-allocation alternatives. Results were used by staff resource area specialists to assess potential impacts to water quantity and distribution, water rights, water quality, stream channel form, fisheries, wildlife, recreation, hydropower production, and economics. These analyses were presented to the public and the decision-making board in an environmental impact statement (EIS). Though, in many instances, the model did not allow for detailed, site-specific analyses, the model was an important tool and its simulation results formed the hydrologic basis for the EIS.  相似文献   

12.
本文通过分析岷江上游水电梯级开发对生态环境的主要影响,确定维持流域生态平衡的最小生态环境需水量测算方法。经测算,岷江上游的生态环境需水量占流域多年平均流量的6%~33%,越靠近源头,生态环境需水量所占比例越大。建议提高岷江上游生态环境需水量所占比例,将生态环境需水占比超过20%的茂县以上河段设为禁止开发区域,取消禁止开发区域内原规划的6级电站。同时在已建电站坝下和各县域出境断面设置生态流量监控断面,确保流域开发的环境生态平衡。  相似文献   

13.
While reservoirs are constructed to regulate stream flows for several beneficial purposes including flood control, water supply, hydroelectric power, irrigation and low flow augmentation and to enhance water based recreation, they create problems of water quality that offer a new dimension to the task of efficient operation. Among other potential deleterious effects, thermal stratification in reservoirs inhibits mixing and causes a deterioration of dissolved oxygen levels in lower layers. Several investigators have examined the thermal properties of reservoirs and resultant effects upon dissolved oxygen and have suggested alternative schemes for alleviating detrimental effects (1,2,3,4,5). The objective of this paper is to outline a methodology for evaluating some of these alternatives in a river-reservoir system where downstream water quality control is one of several purposes to be served by the reservoir.  相似文献   

14.
ABSTRACT: The effects of potential climate change on water resources in the Delaware River basin were determined. The study focused on two important water-resource components in the basin: (1) storage in the reservoirs that supply New York City, and (2) the position of the salt front in the Delaware River estuary. Current reservoir operating procedures provide for releases from the New York City reservoirs to maintain the position of the salt front in the estuary downstream from freshwater intakes and ground-water recharge zones in the Philadelphia metropolitan area. A hydrologic model of the basin was developed to simulate changes in New York City reservoir storage and the position of the salt front in the Delaware River estuary given changes in temperature and precipitation. Results of simulations indicated that storage depletion in the New York City reservoirs is a more likely effect of changes in temperature and precipitation than is the upstream movement of the salt front in the Delaware River estuary. In contrast, the results indicated that a rise in sea level would have a greater effect on movement of the salt front than on storage in the New York City reservoirs. The model simulations also projected that, by decreasing current mandated reservoir releases, a balance can be reached wherein the negative effects of climate change on storage in the New York City reservoirs and the position of the salt front in the Delaware River estuary are minimized. Finally, the results indicated that natural variability in climate is of such magnitude that its effects on water resources could overwhelm the effects of long-term trends in precipitation and temperature.  相似文献   

15.
ABSTRACT: A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards.  相似文献   

16.
Environmental flows are an important consideration in licensing hydropower projects as operational flow releases can result in adverse conditions for downstream ecological communities. Flow variability assessments have typically focused on pre‐ and post‐dam conditions using metrics based on daily averaged flow values. This study used subdaily and daily flow data to assess environmental flow response to changes in hydropower operations from daily peaking to run‐of‐river. An analysis tool was developed to quantify flow variability metrics and was applied to four hydropower projects. Significant differences were observed between operations at the 99% confidence level in the median flow values using hourly averaged flow datasets. Median daily rise and fall rates decreased on average 34.5 and 27.9%, respectively, whereas median hourly rise and fall rates decreased on average 50.1 and 50.6%, respectively. Differences in operational flow regimes were more pronounced in the hourly averaged flow datasets and less pronounced or nonexistent in the daily averaged flow datasets. These outcomes have implications for the development of ecology‐flow relationships that quantify effects of flow on processes such as fish stranding and displacement, along with habitat stability. Results indicate that flow variability statistics should be quantified using subdaily datasets to accurately represent the nature of hydropower operations, especially for daily peaking facilities.  相似文献   

17.
尼洋河流域水资源十分丰富,水能蕴藏量巨大,生态环境良好。随着西藏经济的发展,必将出现大规模开发利用水资源的趋势,探讨流域水资源和环境的现状及可持续发展具有十分重要的现实意义。本文对尼洋河流域基础资料的收集与整理,分析尼洋河流域的特点与现存的问题,根据收集的水质监测资料,分析了流域污染源概况和构成,以未进行水环境功能区划为前提,选择模糊综合评价法对尼洋河流域水环境质量进行现状评价,并对超标断面进行了原因分析,通过对2012年尼洋河流域14个监测断面监测成果的评价,得出尼洋河流域水质现状良好的结论,为以后的水功能区划分、水质目标的确定以及水环境功能区划分提供依据。  相似文献   

18.
: In general, the choice among reservoirs for water supply or flow augmentation is a multiobjective problem. Choices are based in part on the yield available from water supply reservoirs or, in the case of flow augmentation reservoirs, on the increase in low flows at downstream locations. Detailed estimates of these effects may be too costly for basin planning purposes. Thus this paper presents methods for rapid estimation of those quantities for New Hampshire. For water supply reservoirs, a composite empirical relation between Y95 (the draft available 95 percent of the time) and storage ratio, S*, is developed from previous studies in the region. For flow augmentation reservoirs, empirical relations between S* and degree of regulation, R*, are applied to each upstream regulating reservoir. Values of regulation arc then summed and divided by the mean flow at the downstream reach of interest. This parameter, (ΓR)*, is then related to increase in flow available 95 percent of the time by an empirical relation.  相似文献   

19.
ABSTRACT: Sound water resource management requires comparison of benefits and costs. Many of the perceived benefits of water relate to providing instream flow for recreation and endangered fish. These uses have value but no prices to guide resource allocation. Techniques to estimate the dollar values of environmental benefits are presented and illustrated with several case studies. The results of the case studies show that emphasis on minimum instream flow allocates far less than the economically optimum amount of water to instream uses. Studies in Idaho demonstrated that optimum flows that balance benefits and costs can be ten times greater than minimum flows. The economic benefits of preserving public trust resources outweighed the replacement cost of water and power by a factor of fifty in California. While it is important to incorporate public preferences in water resource management, these economic survey techniques provide water managers with information not just on preference but how much the public is willing to pay for as well. This facilitates comparison of the public costs and benefits of instream flows.  相似文献   

20.
The proposed restoration of an abandoned hydroelectric dam on the Quinebaug River, Connecticut, is studied using energy analysis. The analysis considers the effects of alternative minimum flow releases, ranging from 0 to 34 cubic meters per second (cms), on the total energy flow of the affected system. The principal system components affected by differing minimum flows are hydroelectric power generation, aquatic habitat, and gross aquatic ecosystem productivity.The minimum flow alternative resulting in the highest annual energy flow in the affected system is considered optimal. From this purely analytical point of view, the optimum minimum flow is 0 cms, due to the short length and low productivity of the regulated reach, and the lack of floodplain interactions.Simulations of longer and more productive river reaches were conducted. For very short, unproductive reaches, in the absence of a floodplain, the contribution of aquatic community productivity to total system energy flow is negligible compared to hydroelectric generation. Optimum minimum flows are higher for longer and more productive reaches. For such cases the operation of hydroelectric dams could reduce total system energy flow because the energy supplied by hydroelectric generation may be offset by losses in aquatic productivity due to diminished riverine habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号