首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We tested whether ingesting toxic algae by heterotrophic prey affected their nutritional value to crab larval predators, using toxic algal strains that are either ingested directly by larval crabs or rejected by them. Ingestion of toxic strains of the dinoflagellates Alexandrium andersoni and A. fundyense by the rotifer Brachionus plicatilis was confirmed. Rotifers having ingested either algal type for five days were fed to freshly hatched larvae of three crab species, with larval survival and stage durations determined. For both algal/rotifer treatments in all three crab species, larvae fed algae directly died during the first zoeal stage, while those fed rotifers that had been fed either algal strain survived to the experiment’s end (zoeal stage 3). Survival was lower, and stage duration longer, for larvae fed rotifers cultured on toxic algae when compared to those fed non-toxic algae. The role of toxic algae in the planktonic food web may be influenced by its direct or indirect ingestion by larval crabs.  相似文献   

2.
Paralytic shellfish poisoning (PSP) toxins can be accumulated by bivalves through the feeding process; therefore, knowledge on feeding and the assimilation of PSP-toxin-containing algae is critical to understand the kinetics of PSP toxins in these bivalves. In the South China Sea, it has been documented that the scallop Chlamys nobilis has a much higher PSP toxin burden than the clam Ruditapes philippinarum. Experiments were therefore carried out to assess whether the difference in toxin burden between these two species of bivalves was due to differences in feeding and absorption. In a mixed diet of Alexandrium tamarense (a PSP-toxin-producing dinoflagellate) and Thalassiosira pseudonana (a non-toxic diatom), the maximum clearance and filtration rates were about two times higher in the scallop C. nobilis than in the clam R. philippinarum. Furthermore, the clams produced pseudofeces at a lower cell density than the scallops. However, we found that the clams were unable to selectively exclude the toxic dinoflagellates by pseudofeces production. The scallop C. nobilis also possessed a greater ability to assimilate A. tamarense with a comparable carbon absorption efficiency to the diatom T. pseudonana. In contrast, the carbon absorption in the clam R. philippinarum was lower when feeding on A. tamarense than on the diatom. In general, the absorption efficiency decreased with increasing concentration of A. tamarense. Thus, it is likely that the higher PSP toxin levels in the scallops compared with clams can be partly explained by differences in their feeding and absorption behavior. Other processes, especially the biotransformation and biokinetics of PSP toxins, may also play a significant role in defining the inter-species differences in PSP body burden in marine bivalves.  相似文献   

3.
J. Drazen 《Marine Biology》2002,140(4):677-686
This study develops energy budgets and estimates feeding rates for two macrourid fishes, Coryphaenoides acrolepis, dominant in the bathyal eastern North Pacific, and the abyssal cosmopolitan species, Coryphaenoides armatus. Daily energy expenditure by C. acrolepis was nearly twice that of C. armatus. C. acrolepis allocated nearly equal amounts of energy to metabolism and growth. Once sexual maturity was reached reproduction became the dominant energetic cost. Either these costs are necessary to retain adequate numbers of eggs and larvae on the continental slopes, or this fish does not reproduce on an annual basis and the calculated costs are an overestimate. C. armatus allocated relatively more energy to metabolism than growth. It may be semelparous, and this strategy would be of great energetic savings in its food-poor but stable environment. Individual daily ration for C. acrolepis decreased from 0.31% to 0.07% of body weight (BW) and for C. armatus from 0.12% to 0.02% BW with increasing fish length. These rates are substantially lower than those for fishes living in cold waters on the continental shelves. The population feeding rates for C. acrolepis ranged from 0.8 to 15 kg km-2 day-1 and for C. armatus from 5 to 2,800 g km-2 day-1. The scavenging behaviour of C. acrolepis was used to investigate the role of carrion as a food supply to the deep-sea benthos. It was estimated that the carrion eaten by C. acrolepis is equivalent to 0.04 mg C m-2 day-1 or only 0.2-0.4% of the average small particulate flux. Carrion consumption is important for scavengers like C. acrolepis, but it is not an important component of the carbon flux into the deep-sea benthic environment.  相似文献   

4.
G. Piniak 《Marine Biology》2002,141(3):449-455
Symbiotic temperate corals can supplement prey capture by the coelenterate host with autotrophic carbon production by endosymbiotic zooxanthellae. To test the relationship between heterotrophic consumption and photosynthetic energy, prey capture by symbiotic and aposymbiotic specimens of the temperate scleractinian coral Oculina arbuscula (Verrill) was measured in January-April 2001. Corals were tested in a laboratory flume at five flow speeds, using Artemia franciscana cysts and nauplii as prey. Per-polyp capture rate and feeding efficiency were independent of symbiotic condition. Capture rate increased with flow speed, while capture efficiency declined. The location of capture shifted from the upstream to downstream side of the coral as flow speed increased. Differences in capture rate, location, and feeding efficiency for cysts and live brine shrimp nauplii were likely due to prey size rather than swimming ability.  相似文献   

5.
Bivalves are important grazers on phytoplankton in shallow waters. However, very little is known about their ability to capture actively moving zooplankton. We investigated the escape response and success of early and late nauplii of three copepod species (Acartia tonsa, Temora longicornis and Eurytemora affinis) in the flow field of a blue mussel, Mytilus edulis, using both video observations and incubation experiments. An empirical model was created to describe the spatial distribution of the fluid deformation rate. Nauplii responded with escape jumps at mean fluid deformation rates of 0.6-1.9 sу. Escape success differed between taxa. T. longicornis was the poorest escaper, while A. tonsa and E. affinis were more efficient and similar to one another. Deformation rates differed in different parts of the flow field, which resulted in differences in escape success between the sectors. Nauplii were caught most often in the sector furthest away from the exhalent siphon, where the deformation rate was the weakest. There the nauplii were unable to detect an escape signal in time to react and flee.  相似文献   

6.
The morphological and physiological mechanisms by which marine herbivores assimilate energy and nutrients from primary producers and transfer them to higher trophic levels of reef ecosystems are poorly understood. Two wide-ranging Caribbean fishes, the dusky damselfish, Stegastes dorsopunicans, and the threespot damselfish, S. planifrons, defend territories on patch reefs in the Archipelago de San Blas, Republic of Panama. We examined how relative intestine length and retention time influence digestion and absorption of energy and nutrients in these fishes. The dusky damselfish has a relative intestine length (RIL=intestine length/standard length) of 1.2 and a Zihler index {ZI=intestine length (mm)/10[mass(g)1/3]} of 3.4. These values are significantly lower (PRIL=PZI<0.0001) than those for the threespot damselfish (3.0 and 8.2, respectively). Both RIL and ZI for both species fall well below previously published values for other herbivorous pomacentrids, and may reflect their primary food resource at San Blas (diatoms). Energy-rich diatoms may be easier to digest than refractory macroalgae characteristic of diets of many herbivorous fishes (RIL range: 2-20). Despite differences in RIL and ZI between these two species, gut retention time is the same (P>0.05) for both dusky (6.6 h) and threespot damselfish (6.5 h). Thus, food travels the length of the threespot damselfish intestine ~2.5 times faster than it does in the dusky damselfish intestine. Levels of protein, carbohydrate, and lipid are significantly (0.003<P<0.030) higher in the feces of dusky damselfish than in the feces of threespot damselfish, when both species were fed a natural diet of benthic diatoms collected from damselfish territories. This indicates threespot damselfish have a greater nutrient-specific and total assimilation efficiency than do dusky damselfish. Furthermore, when fed an artificial pellet diet, protein absorption efficiency differed significantly (P=0.014) between species; threespot damselfish absorbed 98.3% of dietary protein, whereas dusky damselfish absorbed 96.4% of dietary protein.  相似文献   

7.
Shortfinned squid species of the genus Illex support commercial fisheries throughout the Atlantic Ocean and Mediterranean Sea. Previous identification of interspecific and intraspecific populations by morphological and size-at-maturity studies have not provided conclusive results. We analysed morphometric body and beak variables (24 characters) in three species of the genus (I. coindetii, I. illecebrosus and I. argentinus), using a geographic and seasonal series of 33 populations for 1,500 specimens of I. coindetii, I. illecebrosus and I. argentinus. Residuals of the regression between each morphometric body and beak variable and mantle length were used as input in a stepwise discriminant analysis. Species discrimination by body and hectocotylus characters required at least eight variables and resulted in high correct-classification percentages for I. coindetii and I. argentinus (75% and 90%, respectively), whereas the best identification resulted from beak characters (83% correctly classified). Size of the suckerless basal arm, sucker-bearing length and beak lateral wall discriminated best among I. coindetii from northern Iberia, northwest Iberia (year-1996) and Ireland in the Atlantic and western Mediterranean versus middle and eastern Mediterranean samples. Canadian shelf and American samples were discriminated from Canadian slope I. illecebrosus. Winter/shelf and winter/slope samples of I. argentinus seemed to form a single biological group separated from Falkland Island, 46°S/autumn spawners and 46°S/1996 specimens along the Patagonian Shelf. No significant sexual or maturity polymorphism was obtained. Discriminant analysis optimised population diagnosis on a morphometric basis of interest in fisheries strategies. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00227-002-0796-7.  相似文献   

8.
Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa)   总被引:1,自引:0,他引:1  
We studied growth of newly released Aurelia aurita ephyra larvae fed five different food types, including a large-sized copepod, a phytoflagellate, and suspended POM (particulate organic matter) made from bivalve meat. Experiments were run at saturated food concentration in two different temperatures over 10 days. The effect of small differences in temperature was inconsistent and interacted with the effect of food type, which, in turn, was highly significant. A low average growth rate (4-9% day-1) was shown when feeding on the large-sized copepod Calanus finmarchicus (80 µg AFDW individual-1), in spite of an extremely high daily ration of up to 1500% of body AFDW. When feeding on the cryptophyte Rhodomonas baltica (ca. 8 µm cell diameter), the ephyrae showed an average growth rate over the 10 day experiment of 7-11%, but with a considerably higher growth rate during the first days. Suspended POM generated an average growth rate of 7-9% day-1, whereas fresh bivalve meat, manually placed into the stomach of the ephyra, gave an average growth rate of 12-14% day-1. Artemia nauplii (ca. 3 µg AFDW individual-1), used as a general reference, resulted in higher growth rates than any of the other food types (17-31% day-1). We conclude that A. aurita ephyrae can capture and feed on phytoplankton, large copepods, and POM; that phytoplankton might be of nutritive significance early in development; and that the high quantity of large-sized copepods ingested is inefficiently converted to growth during early development. POM is a potential food source because of the ability of the ephyrae to encounter and ingest it, although concentration, size distribution, and nutritional composition of natural POM probably constrain its effect on growth.  相似文献   

9.
The influence of oxygen concentration on total and basal metabolism, scope of activity, drag force and duration of jerks, time spent swimming and energy cost of locomotion in Moina micrura Hellich females cultured under hypo- and normoxia was investigated. Scope of activity (Ql) of hemoglobin-rich red individuals (Ma) acclimated to hypoxia depended less upon oxygen concentration than that of non-acclimated, pale individuals (Mna). Within the range 10-0.3 mg O2 l-1 Ql decreased 4.4-fold in Ma and 62.5-fold in Mna. In both Ma and Mna the integral drag force of antenna fell from 0.22ǂ.07 to 0.12ǂ.04 dyn (1 dyn=1·10-5 N), the duration of jerks increased from 0.06ǂ.01 to 0.1ǂ.02 s in the range from ~2.0 mg O2 l-1 to sublethal oxygen concentrations. At 0.7-0.8 mg O2 l-1 Mna stopped filtration and increased time spent swimming. In contrast, even under more severe hypoxia (~0.2 mg O2 l-1), Ma maintained their filtering activity using energy (up to 80% of total metabolism) achieved due to increased oxygen capacity of the blood. Separating locomotion and feeding functions, M. micrura can spend less energy for swimming and use its energy budget more plastically under changing environmental conditions.  相似文献   

10.
H. Auel  W. Hagen 《Marine Biology》2002,140(5):1013-1021
During the "International Arctic Ocean Expedition 1991" (20 August-21 September 1991) mesozooplankton was sampled at six stations in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean from 1,500 m depth to the surface by multiple opening/closing net hauls. Total mesozooplankton abundance decreased from 268 ind. m-3 in the surface layer (0-50 m) to <25 ind. m-3 below 200 m depth. The small copepods Oithona similis and Microcalanus pygmaeus, as well as copepod nauplii, were most abundant close to the surface, while Oncaea borealis and Spinocalanus spp. frequently occurred at greater depth. Mesozooplankton dry mass (DM) integrated over the upper 1,500 m of the water column was surprisingly stable throughout the investigation area and measured 2.0ǂ.3 g DM m-2. Dry mass in the upper 50 m measured 20.9 mg m-3 and was dominated by Calanus hyperboreus (57.4%) and C. glacialis (21.1%). C. finmarchicus was very abundant only in the Nansen Basin. Below 200 m the calanoid copepods Metridia longa, Microcalanus pygmaeus and Pareuchaeta spp., the decapod Hymenodora glacialis and chaetognaths of the genus Eukrohnia were the principal contributors to biomass values of <1 mg DM m-3. Hence, vertical changes in abundance, biomass and species composition were much more pronounced than regional differences between the basins. Three different mesozooplankton communities were differentiated according to their faunistic composition and are discussed in context with the major water masses: Polar Surface Water, Atlantic Layer and Arctic Deep Water.  相似文献   

11.
Mutlu  E. 《Marine Biology》2003,142(3):517-523
Swimming trajectories of Calanus euxinus Hulsemann in the Black Sea were studied using an echosounder at 120 and 200 kHz. C. euxinus were acoustically discriminated with respect to vertical migration and swimming speed, according to dissolved oxygen (DO) concentration and the timing of migrations. Species became torpid in water with DO values <0.5 mg lу. The time spent swimming under DO conditions between 2 and 5 mg lу was insignificant, and varied greatly from the 10% to 25% of total time spent swimming under normoxic conditions (5-10 mg lу). C. euxinus formed a concentration layer in the water of 1-3 m thickness. Upward migration was completed in about 3.5 h, starting 2.5 h before and ending 1 h after sunset (average rate: 0.95 cm sу) in summer. Species ascended discretely from the suboxic to the lower boundry of the cold intermediate layer (CIL) at 0.82 cm sу, and passed up the CIL and thermocline fast (2.3 cm sу). Downward migration took less time (2 h), starting ~1 h before and ending ~1 h after sunrise. Swimming speed within the thermocline and CIL was 2.7 cm sу; copepods subsequently returned to daylight depth at a sinking speed of 0.57 cm sу. Total time for C. euxinus to settle to their nocturnal depth layer was about 5 h.  相似文献   

12.
Oxygen consumption of individual larvae of the Antarctic sea-star Odontaster validus was measured during the 50-day period following fertilisation. Values ranged from 0.76 pmol O2 h-1 for one specimen at the coeloblastula stage to 77.6 pmol O2 h-1 for one bipinnaria larva. At 0°C the mean oxygen consumption rate of an individual larva increased from 10.9 pmol O2 h-1 (standard error of the mean, SEM, 0.13) for a gastrula larva, 13 days post-fertilisation, to 25.4 pmol O2 h-1 (SEM 3.5) at the bipinnaria stage (50 days post-fertilisation). Gastrulae reared at -0.5°C did not have significantly different oxygen consumption rates between days 13 and 45 post-fertilisation (mean=11.4 pmol O2 h-1). Individual metabolic rates were highly variable, covering more than a 40-fold range. At 2°C gastrula oxygen consumption was on average 45% higher (17.35 pmol O2 h-1), giving a Q10 temperature effect of 4.4. For bipinnaria, mean oxygen consumption in 2°C larvae (31.4 pmol O2 h-1) was not significantly different from that in larvae at -0.5°C, suggesting bipinnaria metabolism may be less sensitive to temperature change than earlier stages. At 2°C the bipinnaria stage was reached at 30-35 days compared with 45-50 days at 0°C, giving a Q10 of 4.5 for temperature effects on development. The method here used a new, highly sensitive micro-respirometry method that is inexpensive and straightforward in design. Individual larvae of O. validus were held in 35- to 50-µl respirometers. These larvae have very low metabolic rates, and published work on such organisms have utilised at least 25 individuals per chamber. The oxygen content of the respirometers was measured using a 25-µl sample injected into a couloximeter. Oxygen consumption rates down to -1 pmol h-1 can be detected. Under optimum conditions oxygen consumption of a single larva of -4 pmol O2 h-1 was measured with an accuracy of ᆨ%. Values of ~15 pmol h-1 could routinely be measured with this accuracy. This method would allow oxygen consumption to be evaluated in individual field-caught larvae of most marine ectotherms.  相似文献   

13.
Picoplanktonic brown tides of Aureococcus anophagefferens have had devastating effects on production of commercially exploited bivalve populations in shallow, mid-Atlantic estuaries in the United States. The toxin produced by this alga has not been chemically characterized. This study develops a bioassay using juvenile mussels, Mytilus edulis, based on the inhibitory effect of brown tide on bivalve suspension-feeding, to compare the cellular toxicity of three Long Island, New York, clonal isolates of A. anophagefferens. Two recent (1995) isolates (CCMP 1707 and 1708) from Peconic Bay proved highly toxic and caused greater than 100-fold reduction in clearance rates (CR) of juvenile mussels in unialgal and mixed suspensions with a nutritious alga, Isochrysis galbana (clone T-iso), relative to controls. A third 1986 isolate from Great South Bay (CCMP 1784) showed no detectable toxicity in 24-h trials, and may have lost its initial potency over more than a decade of laboratory culture. Identification of a non-toxic strain provides a useful tool for future research. Cultures of the toxic isolate CCMP 1708 in late-stationary growth phase were significantly more toxic than those in early-exponential phase. The threshold concentration of toxic A. anophagefferens cells that inhibits clearance on co-occurring phytoplankton species was determined for juvenile (10-mm) hard clams, Mercenaria mercenaria. Relatively low concentrations (⣃᎒3 to 50᎒3 cells ml-1) of isolate CCMP 1708 were sufficient to sharply reduce clam CR of I. galbana. Calculations based on these results suggest that, at peak historical densities of M. mercenaria in Great South Bay, removal of A. anophagefferens at low cell densities by suspension-feeding benthos could provide an effective top-down grazing control mechanism to prevent the initiation of brown tide in shallow, inner bays.  相似文献   

14.
W. Fitt  C. Cook 《Marine Biology》2001,139(3):507-517
The availability of solid food (Artemia nauplii) and dissolved inorganic nutrients (ammonium, nitrate, phosphate) to the shallow-water marine hydroid Myrionema amboinense was manipulated for 1-8 days in order to investigate their role in the growth of intracellular symbiotic dinoflagellates (zooxanthellae) of the genus Symbiodinium. Symbionts from hydroids collected from the field or maintained under laboratory conditions (25°C, 12 h:12 h light:dark cycle, 80 µE m-2 s-1 fluorescent lighting) always exhibited a single peak in mitotic index (MI) at dawn. Symbionts in freshly collected field animals had an MI peak of about 15%. Symbiotic dinoflagellates in hydroids fed Artemia nauplii twice daily in the laboratory maintained this dawn peak of MI between 10% and 15%, but in the absence of feeding or added inorganic nutrients, this peak declined to less than 1% within 2-4 days. In contrast, when hydroids were placed in solutions containing ammonium (20 µM NH4Cl), nitrate (10 µM NaNO3), and a combination of ammonium and phosphate (2 µM Na2HPO4) immediately after collection, the algal MI remained between 5% and 15% for 4-7 days; the addition of 2 µM phosphate did not increase MI relative to unfed rates. When unfed animals were placed in dissolved nitrogen or fed Artemia, the symbiont MI increased from <1% to 10-17% within 2-3 days; P alone had no effect. However, the increase resulting from added inorganic nutrients was temporary, lasting only 5-7 days. These observations suggest that algal division in the host is maintained indefinitely in the field or by feeding particulate foods twice daily in the laboratory, but the addition of inorganic nutrients alone (ammonium, nitrate and ammonium/phosphate) appeared to support the completion of a maximum of one additional round of cell division. Nutrients required for continued growth and division of symbiotic dinoflagellates are linked to host feeding and host growth; without external food, neither host nor symbiont continue to grow. The same phenomenon is seen in zooxanthellate anemones, clams and corals, where total numbers of symbionts appear to be linked to changes in host-tissue biomass (protein), achieving relatively stable densities in M. amboinense, corals and other cnidarian symbioses, depending on their local environmental conditions. The results of the present study help explain the cellular responses of algal symbionts in reef-dwelling invertebrates to additions of dissolved inorganic nutrients to coral-reef ecosystems.  相似文献   

15.
We examined feeding by larval weakfish, Cynoscion regalis (Bloch and Schneider), in laboratory experiments conducted during the 1991 spawning season. under natural conditions weakfish larval development is ca. 3 wk, and we ran separate experiments with larvae of five different ages (5, 8, 11, 14, and 17 d post-hatching). We used two different size classes of rotifers (Brachionus plicatilis) and brine shrimp nauplii (Artemia sp.) as prey organisms. Contrary to results of previous research, weakfish larvae did not select prey based on size alone. When prey abundance was above 100 itemsl-1 weakfish, larvae always chose large rotifers (length = 216 m) over small rotifers (length = 160 m). At 11 d post-hatching, larvae switched their diet from large rotifers to small brine shrimp nauplii (length = 449 m); however, when fed small rotifers and small brine shrimp nauplii the change in diet occurred at 14 d post-hatching. This pattern of selectivity was maintained in each larval age class. Early-stage larvae (5 and 8 d post-hatching) did not feed selectively when prey abundance was less than 100 itemsl-1. Late-stage larvae (17 d post-hatching) fed selectively at abundances ranging from 10 to 10000 items-1. Lwimming speeds of prey items, which ranged from 1 to 6 mms-1, had no consistent effect on prey selection. These results suggest that weakfish larvae are able to feed selectively, that selectivity changes as larvae age, and that selectivity is also influenced by prey abundance.  相似文献   

16.
During three "Polarstern" cruises to the ice-covered Greenland Sea (spring 1997, summer 1994, autumn 1995) studies on the under-ice habitat (morphology, hydrography, ice-algal biomass) and on the macrofaunal, autochthonous under-ice amphipods (species diversity, abundance) were carried out in order to describe environmental controls and seasonal patterns in this community. In spring, the ice underside was rather smooth and whitish, while in summer melting structures and sloughed-off ice-algal threads were observed, in autumn detritus clumps accumulated in depressions at the ice underside. Only in summer, a thin layer of warm (up to -0.6°C) and less saline (as low as S=6.3) water was found at the ice-water interface above Polar Water. Integrated ice-algal biomass was highest during autumn (2.6 mg chl a m-2) and lowest during summer (1.2 mg chl a m-2). Four species of under-ice amphipods occurred in spring and summer (Apherusa glacialis, Onisimus glacialis, O. nanseni, Gammarus wilkitzkii), but only the last species was observed at the ice underside in autumn. A. glacialis and G. wilkitzkii were equally abundant in spring; A. glacialis dominated in summer. The highest total abundance of amphipods occurred during summer (31.9 ind. m-2), compared to lower abundances in spring and autumn (5.3 and 1.1 ind. m-2, respectively). A factor analysis revealed seasonal patterns in the data set, which mainly influenced A. glacialis, and species-specific relations between several environmental factors and the distribution of under-ice amphipods. Abundance of A. glacialis was closely related to the under-ice hydrography and ice-algal biomass, whereas the other amphipod species were more influenced by the under-ice morphology. It is therefore stated that the observed thinning of the Arctic sea ice and the resulting increased meltwater input and change in morphology of floes will have a profoundly adverse effect on the under-ice amphipods.  相似文献   

17.
The three meiobenthic ostracod species Candona neglecta, Paracyprideis fennica and Heterocyprideis sorbyana are commonly encountered in the deep (20-40 m) soft bottoms of the Baltic proper, and may contribute more to the total meiobenthic biomass than any other group. Experimental data indicate substantial differences in their utilisation of settling phytodetritus, with C. neglecta able to exploit newly settled organic material to a larger extent than P. fennica and H. sorbyana. Ostracod species composition, as well as ostracod and sediment carbon isotope contents, were studied in the field from an area with local differences in potential food resources. The study was performed during the late period of summer blooms of the cyanobacteria Aphanizomenon sp. Results showed that when all samples were taken together, adult C. neglecta (-22.4‰) was significantly more depleted in '13C than adult P. fennica (-21.0‰) and H. sorbyana (-20.3‰), indicating differences in food selection among the species. The flocculent sediment layer had, in all instances, lighter carbon ratios than did the lower layers. This trend was mirrored in most cases in the slight enrichment in C. neglecta compared to generally greater enrichment in the other two species. Carbon signatures of C. neglecta also varied significantly between stations, indicating that this species fed on different resources depending on location. Juvenile C. neglecta were far more depleted in '13C than adults and reflected the carbon signature of the cyanobacteria Aphanizomenon sp. The latter is known to be the most '13C-depleted phytoplankton member in the area.  相似文献   

18.
Pigment contents, proteins and net photosynthesis were investigated in fully developed leaf of 1-year-old seedlings of six mangroves (Bruguiera gymnorrhiza, Rhizophora apiculata) and mangrove associates (Caesalpinia bonduc, Cerbera manghas, Derris heterophylla, Thespesia populnea), collected from Bhitarkanika, located on the east coast of India. Large variations in the photosynthetic rates (PN) among the six species were observed, ranging from 10.16 µmol CO2 m-2 s-1 in C. bonduc to 15.28 µmol CO2 m-2 s-1 in R. apiculata. The total leaf protein content ranged from 12.09 mg g-1 dry wt in T. populnea to 51.89 mg g-1 dry wt in B. gymnorrhiza. The chlorophyll a/b ratio was typically about 3.0 in all the studied species, except C. bonduc (2.8). Photosynthetic rates and chl a/b ratio in the leaves were found to be correlated. Analysis of chlorophyll and xanthophyll spectra suggested: (1) variations in different forms and amounts of carotenes as well as xanthophylls and (2) the presence of high amounts of near-UV-absorbing substances in leaves, particularly in the two mangroves (B. gymnorrhiza, R. apiculata) and a mangrove associate (T. populnea), which appears to be an adaptive feature. Estimation of the chl a/b ratios in isolated thylakoids yielded a low value of 1.8 for R. apiculata and >2.6 for other species. The total protein/chlorophyll ratios in thylakoids varied considerably from 3.14 (D. heterophylla) to 10.88 (T. populnea) among the mangrove associates and from 16.09 to 18.88 between the members of the Rhizophoraceae. The chlorophyll/carotenoid ratios in thylakoids of the six species were more or less similar. The absorption spectra for washed thylakoids of C. manghas and D. heterophylla exhibited absorption characteristics typical for C3-plant thylakoids. However, thylakoids isolated from R. apiculata, B. gymnorrhiza, C. bonduc and T. populnea exhibited an unusual increase in absorption in the blue region (380-410 nm) of the absorption spectrum. The presence of high-absorbing (in the short-wavelength, near-UV region) pigments appears to be closely associated with the thylakoids in R. apiculata and T. populnea. Our results, therefore, suggest a wide range of variation, not only in protein and pigment contents of photosynthetic tissues, but also in the spectral characteristics and composition of the pigments in mangrove species. An understanding of the nature of these pigments in mangroves and their associates, under their natural conditions and especially in relation to eco-physiological adaptations, is necessary, not only in relation to conservation, but also to allow propagation under different salinity conditions.  相似文献   

19.
The planktonic copepod Calanus finmarchicus is a dominant member of the zooplankton community in the lower St. Lawrence Estuary in eastern Canada. Blooms of the toxic marine dinoflagellate Alexandrium excavatum which produces high cellular levels of paralytic shellfish poisoning (PSP) toxins, occur during the period of high C. finmarchicus production in summer in this region. To study the feeding behaviour of C. finmarchicus in the presence of Alexandrium spp., experiments were conducted in which female adult copepods collected from the St. Lawrence Estuary between May and September 1991 were exposed under controlled conditions to two toxic isolates of A. excavatum (Pr18b and Pr11f) from the estuary and to a non-toxic control (PLY 173) of a closely related species, A. tamarense isolated from the Tamar Estuary, Plymouth, U.K. Clearance rates on non-toxic A. tamarense cells averaged 5.5 ml ind-1 h-1 but were nearzero with either toxic isolate. When presented with a mixture of A. excavatum and the non-toxic diatom Thalassiosira weissflogii in varying proportions, C. finmarchicus fed upon the diatom but avoided the toxic dinoflagellate. Although feeding rates on A. excavatum were very low, toxin analysis by high-performance liquid chromatography with fluorescence detection (HPLC-FD) revealed that the PSP toxins were accumulated in copepods exposed to toxigenic dinoflagellates.The toxin composition in copepods was similar to that of the toxic dinoflagellate, but not necessarily identical, particularly after short-term (2-h) exposure, when relatively elevated levels of N-sulfocarbamoyl toxins were detected. The evidence suggests that C. finmarchicus ingests toxic dinoflagellate cells, either mistakenly or during exploratory bouts of feeding, and accumulates PSP toxins in its gut system and perhaps in other tissues.  相似文献   

20.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号