首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Organic substrates in reactive barrier systems are often heterogeneous material mixtures with relatively large contrasts in hydraulic conductivity and porosity over short distances. These short-range variations in material properties imply that preferential flow paths and diffusion between regions of higher and lower hydraulic conductivity may be important for treatment efficiency. This paper presents the results of a laboratory column experiment where denitrification is investigated using a heterogeneous reactive substrate (sawdust mixed with sewage sludge). Displacement experiments with a non-reactive solute at three different flow rates are used to estimate transport parameters using a dual porosity non-equilibrium model. Parameter estimation from breakthrough curves produced relatively consistent values for the fraction of the porosity consisting of mobile water (β) and the mass transfer coefficient (α), with average values of 0.27 and 0.42 d(-1), respectively. The column system removes >95% of the influent nitrate at low and medium flow, but only 50-75% of the influent nitrate at high flow, suggesting that denitrification kinetics and diffusive mass transfer rates are limiting the degree of treatment at lower hydraulic residence times. Reactive barrier systems containing dual porosity media must therefore consider mass transfer times in their design; this is often most easily accommodated by adjusting flowpath length.  相似文献   

3.
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.  相似文献   

4.
A sand column leaching system with well-controlled suction and flow rate was built to investigate the effects on bacterial transport of air-water interface effects (AWI) correlated to water content, particle size, and column length. Adsorption of Escherichia coli strain D to silica sands was measured in batch tests. The average % adsorption for coarse and fine sands was 45.9+/-7.8% and 96.9+/-3.2%, respectively. However, results from static batch adsorption experiments have limited applicability to dynamic bacterial transport in columns. The early breakthrough of E. coli relative to bromide was clear for all columns, namely c. 0.15 to 0.3 pore volume earlier. Column length had no significant effects on the E. coli peak concentration or on total recovery in leachate, indicating retention in the top layer of sands. Tailing of breakthrough curves was more prominent for all fine sand columns than their coarse sand counterparts. Bacterial recovery in leachate from coarse and saturated sand columns was significantly higher than from fine and unsaturated columns. Observed data were fitted by the convection-dispersion model, amended for one-site and two-site adsorption to particles, and for air-water interface (AWI) adsorption. Among all models, the two-site+AWI model achieved consistently high model efficiency for all experiments. Thus it is evident from experimental and modeling results that AWI adsorption plays an important role in E. coli transport in sand columns.  相似文献   

5.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

6.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

7.
Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment yielded a radon retardation factor of 5.0, with a calculated TCE saturation of 6.5%. Numerical simulation breakthrough curves provided reasonably good matches to the approximate analytical solution breakthrough curves. However, non-equilibrium radon partitioning and heterogeneous TCE distributions may affect the retardation factors and TCE saturation estimates.  相似文献   

8.
Applied tracer tests provide a means to estimate aquifer parameters in fractured rock. The traditional approach to analysing these tests has been using a single fracture model to find the parameter values that generate the best fit to the measured breakthrough curve. In many cases, the ultimate aim is to predict solute transport under the natural gradient. Usually, no confidence limits are placed on parameter values and the impact of parameter errors on predictions of solute transport is not discussed. The assumption inherent in this approach is that the parameters determined under forced conditions will enable prediction of solute transport under the natural gradient. This paper considers the parameter and prediction uncertainty that might arise from analysis of breakthrough curves obtained from forced gradient applied tracer tests. By adding noise to an exact solution for transport in a single fracture in a porous matrix we create multiple realisations of an initial breakthrough curve. A least squares fitting routine is used to obtain a fit to each realisation, yielding a range of parameter values rather than a single set of absolute values. The suite of parameters is then used to make predictions of solute transport under lower hydraulic gradients and the uncertainty of estimated parameters and subsequent predictions of solute transport is compared. The results of this study show that predictions of breakthrough curve characteristics (first inflection point time, peak arrival time and peak concentration) for groundwater flow speeds with orders of magnitude smaller than that at which a test is conducted can sometimes be determined even more accurately than the fracture and matrix parameters.  相似文献   

9.
Subsurface solute transport through structured soil is studied by model interpretation of experimental breakthrough curves from tritium and phosphorus tracer tests in three intact soil monoliths. Similar geochemical conditions, with nearly neutral pH, were maintained in all the experiments. Observed transport differences for the same tracer are thus mainly due to differences in the physical transport process between the different monoliths. The modelling is based on a probabilistic Lagrangian approach that decouples physical and chemical mass transfer and transformation processes from pure and stochastic advection. Thereby, it enables explicit quantification of the physical transport process through preferential flow paths, honouring all independently available experimental information. Modelling of the tritium breakthrough curves yields a probability density function of non-reactive solute travel time that is coupled with a reaction model for linear, non-equilibrium sorption–desorption to describe the phosphorus transport. The tritium model results indicate that significant preferential flow occurs in all the experimental soil monoliths, ranging from 60–100% of the total water flow moving through only 25–40% of the total water content. In agreement with the fact that geochemical conditions were similar in all experiments, phosphorus model results yield consistent first-order kinetic parameter values for the sorption–desorption process in two of the three soil monoliths; phosphorus transport through the third monolith cannot be modelled because the apparent mean transport rate of phosphorus is anomalously rapid relative to the non-adsorptive tritium transport. The occurrence of preferential flow alters the whole shape of the phosphorus breakthrough curve, not least the peak mass flux and concentration values, and increases the transported phosphorus mass by 2–3 times relative to the estimated mass transport without preferential flow in the two modelled monoliths.  相似文献   

10.
Bengtsson G  Picado F 《Chemosphere》2008,73(4):526-531
A combination of laboratory scale derived correlations and measurements of grain size distribution, DOC (dissolved organic carbon) concentration, and density of suspended bacteria promises to be useful in estimating Hg(II) sorption in heterogeneous streambeds and groundwater environments. This was found by shaking intact sediment and fractions thereof (<63-2000mum) with solutions of HgCl(2) (1.0-10.0ngml(-1)). The intact sediment was also shaken with the Hg(II) solutions separately in presence of DOC (6.5-90.2mugml(-1)) or brought in contact with suspensions of a strain of groundwater bacteria (2x10(4)-2x10(6)cellsml(-1)). Hg(II) sorption was rather weak and positively correlated with the grain size, and the sorption coefficient (K(d)) varied between about 300 and 600mlg(-1). By using the relative surface areas of the fractions, K(d) for the intact sediment was back calculated with 2% deviation. K(d) was negatively correlated with the concentration of DOC and positively correlated with the number of bacteria. A multiple regression showed that K(d) was significantly more influenced by the number of bacteria than by the grain size. The findings imply that common DOC concentrations in groundwater and streambeds, 5-20mugml(-1), will halve the K(d) obtained from standard sorption assays of Hg(II), and that K(d) will almost double when the cell numbers are doubled at densities that are common in aquifers. The findings suggest that simultaneous measurements of surface areas of sediment particles, DOC concentrations, and bacterial numbers are useful to predict spatial variation of Hg(II) sorption in aquifers and sandy sediments.  相似文献   

11.
The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates.  相似文献   

12.
杀虫剂十氯酮的多介质环境行为模拟   总被引:2,自引:0,他引:2  
应用EQC模型模拟十氯酮在多介质环境中的归宿和迁移通量.结果表明:土壤是十氯酮最大的贮存库,在稳态平衡条件下,残留率达到95.0%;在稳态非平衡条件下,十氯酮单独排放到水体,有37.5%残留在于排放的水体中,其在大气的浓度水平和质量分布均很低,在沉积物中的质量则来自于水体向沉积物的沉降迁移;十氯酮主要通过水体的水平迁移和土壤的厌氧降解输出;十氯酮的主要界面迁移过程是大气向土壤的迁移,其次是水体向沉积物的沉降和大气向水体的迁移.  相似文献   

13.
Twenty-eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7-cm-long columns of intact sediment or repacked sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of columns to examine the effect of cell morphology and cell surface properties on bacterial transport. The effects of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also investigated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide-coated columns, but only in the suboxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide-coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect appears to be profound for weakly and strongly charged hydrophilic bacteria and may contribute to differences in observations between laboratory experiments versus field-scale investigations particularly if the groundwater pH remains subneutral and Fe oxyhydroxide phases exist. These observation validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.  相似文献   

14.
Fractures and biopores can act as preferential flow paths in clay aquitards and may rapidly transmit contaminants into underlying aquifers. Reliable numerical models for assessment of groundwater contamination from such aquitards are needed for planning, regulatory and remediation purposes. In this investigation, high resolution preferential water-saturated flow and bromide transport data were used to evaluate the suitability of equivalent porous medium (EPM), dual porosity (DP) and discrete fracture/matrix diffusion (DFMD) numerical modeling approaches for assessment of flow and non-reactive solute transport in clayey till. The experimental data were obtained from four large undisturbed soil columns (taken from 1.5 to 3.5 m depth) in which biopores and channels along fractures controlled 96-99% of water-saturated flow. Simulating the transport data with the EPM effective porosity model (FRACTRAN in EPM mode) was not successful because calibrated effective porosity for the same column had to be varied up to 1 order of magnitude in order to simulate solute breakthrough for the applied flow rates between 11 and 49 mm/day. Attempts to simulate the same data with the DP models CXTFIT and MODFLOW/MT3D were also unsuccessful because fitted values for dispersion, mobile zone porosity, and mass transfer coefficient between mobile and immobile zones varied several orders of magnitude for the different flow rates, and because dispersion values were furthermore not physically realistic. Only the DFMD modeling approach (FRACTRAN in DFMD mode) was capable to simulate the observed changes in solute transport behavior during alternating flow rate without changing values of calibrated fracture spacing and fracture aperture to represent the macropores.  相似文献   

15.
Liu W  Wang X  Wu L  Chen M  Tu C  Luo Y  Christie P 《Chemosphere》2012,87(10):1105-1110
Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to <30 mN m−1 after 72 h of growth. These bacteria were used to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues.  相似文献   

16.

River estuaries, continental shelf, and sediment contamination are closely linked from the point of view of sediment transport and diffusion that is governed by different factors such as sea waves and currents, river flows and floods, and sediment characteristics. Taking these factors into consideration, we have examined marine environmental and marine bottom sediments off the mouth of a stream to highlight the main ways of sediment and contaminant transport and diffusion on the continental shelf. For this purpose, we followed a multidisciplinary approach, studying circulation of water masses, hydrological characteristics of water column, distribution and main characteristics of sediment grain size, sediment mineralogical composition, and metal concentrations of bottom sediments. Our results allowed identifying the presence of preferential ways of sediment deposition and areas of sediment spread for the Entella Stream, as well as the origin of some metals.

  相似文献   

17.
Evaluating non-equilibrium solute transport in small soil columns   总被引:11,自引:0,他引:11  
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.  相似文献   

18.
This paper presents an analytical model to describe pulse injection experiments. This model solves the advection-diffusion equation while taking into account back diffusion from the clay core to the inlet and from the outlet to the clay core. In most analytical models, back diffusion is neglected. For sufficiently high Péclet numbers, this is a good approximation. However, in experiments where the Péclet number is low, back diffusion is important and must be taken into account. An additional advantage of the present model is that both concentration and flux are conserved at the inlet and at the outlet of the clay core. This model is used to fit pulse injection experiments with iodide and tritiated water (HTO) in clay cores. The (new) model is required for fitting the experimental results since in clay layers advection is very slow leading to a low Péclet number. The experiments are performed on clay cores taken from different depths from the Boom Clay and the Ypres Clay layer under the site of the nuclear power plant of Doel (Belgium). The quality of all fits is excellent and the obtained parameter values are coherent. For HTO, the fitted value for the diffusion accessible porosity is consistent with measurements of the water content in Ypres Clay cores. In both types of clays, the apparent diffusion coefficient at zero flow is between 10(-10) and 2 x 10(-10) m(2)/s for iodide and between 2 x 10(-10) and 3 x 10(-10) m(2)/s for HTO. The dispersion length is in the order of 10(-3) m. The average value for the diffusion accessible porosity is between 0.35 and 0.4 for HTO and between 0.2 and 0.25 for iodide.  相似文献   

19.
Soil column experiments are used to investigate the fate of three pesticides of high, intermediate, and low solubility in groundwater: N- phosphonomethyl glycine (glyphosate); O,O-diethyl-S-[(ethylthio)methyl]phosphorodithioate (phorate); (2,4-dichlorophenoxy)acetic acid (2,4-D). Feed solutions are prepared by adding each pesticide (100 mg/L glyphosate, 50 micro g/L phorate, 50 mg/L 2,4-D) along with conservative tracer, KBr, in synthetic groundwater. The concentration of the pesticides in effluents is detected by ion chromatography (glyphosate, 2,4-D) and GC-FID (phorate). The Br(-) breakthrough curves are employed to estimate the dispersion coefficient and mean pore velocity in each column. Solute transport and reactive models accounting for equilibrium/non-equilibrium sorption and biodegradation are coupled with inverse modeling numerical codes to estimate the kinetic parameters for all pesticides.  相似文献   

20.
Sakai S  Deguchi S  Takatsuki H  Uchibo A 《Chemosphere》2001,43(4-7):537-547
Drastic increases in PCDDs/DFs concentrations were identified in the uppermost layers of a sediment core sample taken from the coastal area of Kobe City. As large-scale fires caused by the Great Hanshin-Awaji earthquake were deemed to be a possible cause, we performed additional sampling of sediment cores and surface sediment samples, estimating the total amount of PCDDs/DFs released from fires and presuming the load to sediments by individual transport routes, such as air and water, using an air diffusion model to investigate the influence of fires. The total amount of PCDDs/DFs released from fires was estimated at 2000 g-total PCDDs/DFs, 22 g-TEQ. Increases in PCDDs/DFs generated in fires were principally transported through water rather than air. If 20% of the total PCDDs/DFs formed in fires had entered water, it would correspond to the entire increase of PCDDs/DFs concentration in sediment cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号