首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.  相似文献   

2.
Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles.The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance.There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman’s correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier.  相似文献   

3.
Recent progress in developing artificial neural network (ANN) metamodels has paved the way for reliable use of these models in the prediction of air pollutant concentrations in urban atmosphere. However, improvement of prediction performance, proper selection of input parameters and model architecture, and quantification of model uncertainties remain key challenges to their practical use. This study has three main objectives: to select an ensemble of input parameters for ANN metamodels consisting of meteorological variables that are predictable by conventional weather forecast models and variables that properly describe the complex nature of pollutant source conditions in a major city, to optimize the ANN models to achieve the most accurate hourly prediction for a case study (city of Tehran), and to examine a methodology to analyze uncertainties based on ANN and Monte Carlo simulations (MCS). In the current study, the ANNs were constructed to predict criteria pollutants of nitrogen oxides (NOx), nitrogen dioxide (NO2), nitrogen monoxide (NO), ozone (O3), carbon monoxide (CO), and particulate matter with aerodynamic diameter of less than 10 μm (PM10) in Tehran based on the data collected at a monitoring station in the densely populated central area of the city. The best combination of input variables was comprehensively investigated taking into account the predictability of meteorological input variables and the study of model performance, correlation coefficients, and spectral analysis. Among numerous meteorological variables, wind speed, air temperature, relative humidity and wind direction were chosen as input variables for the ANN models. The complex nature of pollutant source conditions was reflected through the use of hour of the day and month of the year as input variables and the development of different models for each day of the week. After that, ANN models were constructed and validated, and a methodology of computing prediction intervals (PI) and probability of exceeding air quality thresholds was developed by combining ANNs and MCSs based on Latin Hypercube Sampling (LHS). The results showed that proper ANN models can be used as reliable metamodels for the prediction of hourly air pollutants in urban environments. High correlations were obtained with R 2 of more than 0.82 between modeled and observed hourly pollutant levels for CO, NOx, NO2, NO, and PM10. However, predicted O3 levels were less accurate. The combined use of ANNs and MCSs seems very promising in analyzing air pollution prediction uncertainties. Replacing deterministic predictions with probabilistic PIs can enhance the reliability of ANN models and provide a means of quantifying prediction uncertainties.  相似文献   

4.
Abstract

It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.  相似文献   

5.
In the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM10 concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R 2 values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R 2 values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.  相似文献   

6.
7.
Multi-layer perceptron (MLP) artificial neural network (ANN) models are compared with traditional multiple regression (MLR) models for daily maximum and average O3 and particulate matter (PM10 and PM2.5) forecasting. MLP particulate forecasting models show little if any improvement over MLR models and exhibit less skill than do O3 forecasting models. Meteorological variables (precipitation, wind, and temperature), persistence, and co-pollutant data are shown to be useful PM predictors. If MLP approaches are adopted for PM forecasting, training methods that improve extreme value prediction are recommended.  相似文献   

8.
With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.  相似文献   

9.
In this study, prediction capacities of multi-linear regression (MLR) and artificial neural networks (ANN) onto coarse particulate matter (PM10) concentrations were investigated. Different meteorological factors on particulate pollution were chosen for operating variables in the model analyses. Two different regions (urban and industrial) were identified in the region of Kocaeli, Turkey. All data sets were obtained from air quality monitoring network of the Ministry of Environment and Urban Planning, and 120 data sets were used in the MLR and ANN models. Regression equations explained the effects of the meteorological factors in MLR analyses. In the ANN model, backpropagation network with two hidden layers has achieved the best prediction efficiency. Determination coefficients and error values were examined for each model. ANN models displayed more accurate results compared to MLR.  相似文献   

10.
The Borman Expressway is a heavily traveled 16-mi segment of the Interstate 80/94 freeway through Northwestern Indiana. The Lake and Porter counties through which this expressway passes are designated as particulate matter < 2.5 microm (PM2.5) and ozone 8-hr standard nonattainment areas. The Purdue University air quality group has been collecting PM2.5, carbon monoxide (CO), wind speed, wind direction, pressure, and temperature data since September 1999. In this work, regression and neural network models were developed for forecasting hourly PM2.5 and CO concentrations. Time series of PM2.5 and CO concentrations, traffic data, and meteorological parameters were used for developing the neural network and regression models. The models were compared using a number of statistical quality indicators. Both models had reasonable accuracy in predicting hourly PM2.5 concentration with coefficient of determination -0.80, root mean square error (RMSE) <4 microg/m3, and index of agreement (IA) > 0.90. For CO prediction, both models showed moderate forecasting performance with a coefficient of determination -0.55, RMSE < 0.50 ppm, and IA -0.85. These models are computationally less cumbersome and require less number of predictors as compared with the deterministic models. The availability of real time PM2.5 and CO forecasts will help highway managers to identify air pollution episodic events beforehand and to determine mitigation strategies.  相似文献   

11.
This study explores ambient air quality forecasts using the conventional time-series approach and a neural network. Sulfur dioxide and ozone monitoring data collected from two background stations and an industrial station are used. Various learning methods and varied numbers of hidden layer processing units of the neural network model are tested. Results obtained from the time-series and neural network models are discussed and compared on the basis of their performance for 1-step-ahead and 24-step-ahead forecasts. Although both models perform well for 1-step-ahead prediction, some neural network results reveal a slightly better forecast without manually adjusting model parameters, according to the results. For a 24-step-ahead forecast, most neural network results are as good as or superior to those of the time-series model. With the advantages of self-learning, self-adaptation, and parallel processing, the neural network approach is a promising technique for developing an automated short-term ambient air quality forecast system.  相似文献   

12.
This study develops a new semiparametric statistical approach for urban air quality forecasting. Compared to conventional approaches, the semiparametric approach allows the model users to benefit from the positive aspects and alleviate the negative ones of parametric and nonparametric approaches. Two advantages of the approach lie in (1) the interpretation of the data set being easily decoded and used by the model and (2) its capability in dependence on prior assumption. To illustrate the performance of the proposed approach, three semiparametric regression models (i.e., linear-, quadratic-, and interactive-based semiparametric regression) are applied to an air quality forecasting problem in the city of Xiamen, China, and satisfactory training and prediction performance are obtained. The three models are also compared to three parametric and two nonparametric regression models. The results indicate that the predictive accuracy of semiparametric regression models is higher than those obtained from the parametric and stepwise cluster analysis models. However, the proposed three semiparametric regression models could be much favored, since they can be achieved more easily and rapidly than the artificial neural network model.  相似文献   

13.
Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R 2), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R 2, and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.  相似文献   

14.
大气污染物扩散模式的应用研究综述   总被引:6,自引:0,他引:6  
应用大气污染物扩散模式可以模拟不同尺度、气象、地形条件下工业污染物在大气中的输送与扩散特征,为大气监测、城市环境规划和空气质量预报等工作提供科学依据.归纳了目前广泛应用于模拟工业污染物扩散的模式,着重介绍了近年来国内外对这些模式的主要应用研究进展,比较了各模式在应用上的优缺点,并对大气污染物扩散模式的应用研究前景进行了讨论.  相似文献   

15.
Wang XK  Lu WZ 《Chemosphere》2006,63(8):1261-1272
Air pollution is an important and popular topic in Hong Kong as concerns have been raised about the health impacts caused by vehicle exhausts in recent years. In Hong Kong, sulphur dioxide SO2, nitrogen dioxide (NO2), nitric oxide (NO), carbon monoxide (CO), and respirable suspended particulates (RSP) are major air pollutants caused by the dominant usage of diesel fuel by goods vehicles and buses. These major pollutants and the related secondary pollutant, e.g., ozone (O3), become and impose harmful impact on human health in Hong Kong area after the northern shifting of major industries to Mainland China. The air pollution index (API), a referential parameter describing air pollution levels, provides information to enhance the public awareness of air pollutions in time series since 1995. In this study, the varying trends of API and the levels of related air pollutants are analyzed based on the database monitored at a selected roadside air quality monitoring station, i.e., Causeway Bay, during 1999-2003. Firstly, the original measured pollutant data and the resultant APIs are analyzed statistically in different time series including daily, monthly, seasonal patterns. It is found that the daily mean APIs in seasonal period can be regarded as stationary time series. Secondly, the auto-regressive moving average (ARMA) method, implemented by Box-Jenkins model, is used to forecast the API time series in different seasonal specifications. The performance evaluations of the adopted models are also carried out and discussed according to Bayesian information criteria (BIC) and root mean square error (RMSE). The results indicate that the ARMA model can provide reliable, satisfactory predictions for the problem interested and is expecting to be an alternative tool for practical assessment and justification.  相似文献   

16.
Ground-level ozone is a secondary pollutant that has recently gained notoriety for its detrimental effects on human and vegetation health. In this paper, a systematic approach is applied to develop artificial neural network (ANN) models for ground-level ozone (O3) prediction in Edmonton, Alberta, Canada, using ambient monitoring data for input. The intent of these models is to provide regulatory agencies with a tool for addressing data gaps in ambient monitoring information and predicting O3 events. The models are used to determine the meteorological conditions and precursors that most affect O3 concentrations. O3 time-series effects and the efficacy of the systematic approach are also assessed. The developed models showed good predictive success, with coefficient of multiple determination values ranging from 0.75 to 0.94 for forecasts up to 2 hr in advance. The inputs most important for O3 prediction were temperature and concentrations of nitric oxide, total hydrocarbons, sulfur dioxide, and nitrogen dioxide.  相似文献   

17.
Wang D  Lu WZ 《Chemosphere》2006,62(10):1600-1611
In this work, we focus on simulating the ground-level ozone (O3) time series and its daily maximum concentration in Hong Kong urban air by employing the multilayer perceptron (MLP) model combined with the automatic relevance determination (ARD) method (for simplicity, we name it as MLP-ARD model). Two air quality monitoring sites in Hong Kong, i.e., Tsuen Wan and Tung Chung, are selected for the numerical experiments. The MLP-ARD model based on Bayesian evidence framework can provide reliable interval estimation of real observation as well as offering efficient strategy to avoid over-fitting. The performance comparisons between MLP-ARD model and traditional artificial neural network (ANN) model based on maximum likelihood indicate that MLP-ARD model is more powerful to capture the wild fluctuation of O3 level especially during O3 episodes than the traditional model. Furthermore, it can assess and rank the input variables for the prediction according to their relative importance to the output variable, i.e., the daily maximum O3 concentration in this study. The preliminary experimental results indicate that nitric oxide (NO) and solar radiation are the most important input variables for O3 prediction at both selected sites. In addition, the previous daily maximum O3 level is also important for Tung Chung site. In this regard, MLP-ARD model is a feasible tool to interpret the real physical and chemical process of urban O3 variation.  相似文献   

18.
In this paper, bootstrapped wavelet neural network (BWNN) was developed for predicting monthly ammonia nitrogen (NH4+–N) and dissolved oxygen (DO) in Harbin region, northeast of China. The Morlet wavelet basis function (WBF) was employed as a nonlinear activation function of traditional three-layer artificial neural network (ANN) structure. Prediction intervals (PI) were constructed according to the calculated uncertainties from the model structure and data noise. Performance of BWNN model was also compared with four different models: traditional ANN, WNN, bootstrapped ANN, and autoregressive integrated moving average model. The results showed that BWNN could handle the severely fluctuating and non-seasonal time series data of water quality, and it produced better performance than the other four models. The uncertainty from data noise was smaller than that from the model structure for NH4+–N; conversely, the uncertainty from data noise was larger for DO series. Besides, total uncertainties in the low-flow period were the biggest due to complicated processes during the freeze-up period of the Songhua River. Further, a data missing–refilling scheme was designed, and better performances of BWNNs for structural data missing (SD) were observed than incidental data missing (ID). For both ID and SD, temporal method was satisfactory for filling NH4+–N series, whereas spatial imputation was fit for DO series. This filling BWNN forecasting method was applied to other areas suffering “real” data missing, and the results demonstrated its efficiency. Thus, the methods introduced here will help managers to obtain informed decisions.  相似文献   

19.
20.
In recent years, the application of titanium dioxide (TiO2) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO2 on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO2 solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号