首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《环境污染与防治》2008,30(3):106-107
科学家现在用新手段追踪环境中的汞,它们是两种不同类型的汞稳定同位素分配。鱼类汞污染是一个全球范围的人群健康威胁,因为积聚在鱼中的甲基汞毒性非常大。但是由于汞通过大气输送分布到全球,所以难以区分当地源和全球源,也难以区分自然源和人为源。  相似文献   

2.
国际社会正在努力在未来2年内谈判达成一项全球性汞控制公约.结合分析发达国家间已签署协定和全球汞控制公约谈判的动态,欧美在1998年拟定的<关于重金属的奥胡斯议定书>很可能成为全球性汞污染控制公约的基础蓝本,全球性汞污染控制公约将可能以控制措施加附件的框架形式,由严格限定汞生产、使用和排放的基本控制条款、国家履约战略、信息交流、资金和技术援助、豁免条款等构成全球性汞控制公约的基础内容.中国是汞使用和排放大国,减汞技术和无汞产品或工艺替代技术不成熟,在汞控制管理方面存在很多不足,未来面临多方面的汞控制国际履约压力.基于对未来全球汞控制公约形势及中国汞控制现状与履约需求分析,就中国参与政府间谈判及国内汞的供应、使用、污染排放控制和含汞废物管理等方面提出了研究建议.  相似文献   

3.
燃煤电厂烟气是中国最重要的人为汞排放源之一,如何控制燃煤烟气汞排放关系着中国履行《关于汞的水俣公约》的成效。通过共沉淀法制备了锡-锰二元金属氧化物(MnO_x-SnO_2)复合材料,对其结构进行了表征,并考察了其对烟气零价汞(Hg~0)的吸附性能。结果表明,在200℃时Hg~0的去除率最高,能达到86.0%;烟气中的O_2能促进Hg~0的去除,而SO_2则抑制Hg~0的去除。MnO_x-SnO_2去除Hg~0的机理是烟气Hg~0首先被吸附在复合材料表面,被MnO_x催化氧化成Hg~(2+),一部分被表面的吸附氧捕捉从而形成HgO,一部分与锡结合形成锡汞齐。  相似文献   

4.
燃煤锅炉是主要的烟气汞排放源,汞大多存在于亚微米级颗粒中,其对环境和人类造成的影响不容忽视。综述了现阶段燃煤锅炉汞排放控制技术的研究进展,并对各项技术的脱汞效率、影响因素、投资成本、优缺点及应用可行性进行了分析比较。分析表明,利用现有污染物控制设备(除尘装置、脱硝装置、脱硫装置)协同脱汞比较经济有效,也是当前研究的重点;洗煤技术、燃烧方式的改进和添加燃烧附加物可作为辅助措施使用。  相似文献   

5.
混汞法是一种设备简单、操作简便且应用历史悠久的提金方法 ,在世界范围内得到了普遍使用 ,同时也导致了严重的汞污染。本文介绍了混汞法的流程以及汞的释放过程和释放因子 ;综述了应用混汞法提金的不同国家和地区 ,对由此引发的大气、水体、生物 (包括人体 )和土壤汞污染的研究现状 ,并讨论了采金地区的环境管理政策  相似文献   

6.
为探究山东省氨排放特征,基于统计数据,运用排放因子法建立了山东省全省及各地级市2008—2018年的人为源氨排放清单,重点研究了山东省人为源氨排放的总量、排放源分布、空间分布与变化趋势.结果表明,2018年山东省人为源氨排放总量为75.823万t,平均排放强度为4.80 t/km 2.畜禽养殖是山东省最大的人为源,占全...  相似文献   

7.
贵州地区大气汞污染及湿法脱硫装置除汞效果的初步评价   总被引:1,自引:0,他引:1  
2004年冬季在贵州地区对大气中气态元素汞进行了大范围的流动监测调查,重点监测电厂分布地区及东部汞采冶加工地区,结果表明,气态元素汞浓度的高值出现在汞化工区和金矿区;在广大农村地区和小县城附近,大气汞浓度大都在100 ng/m3范围内.同期还进行了大气颗粒物汞的采样和分析,结果表明,监测到的大气颗粒物的汞浓度水平<3 ng/m3,与国内其他一些城市相当;细颗粒物中汞的富集度高,粒径<2.2 μm的颗粒物汞占60%~80%.此外,实测了采用石灰-石膏法脱硫电厂的燃煤汞平衡,评价了汞去除效果,结果表明,燃煤中的汞大约20%留在灰渣中,石灰-石膏脱去约20%,约59%的汞通过烟气排放到空气中.  相似文献   

8.
杀虫剂十氯酮的多介质环境行为模拟   总被引:2,自引:0,他引:2  
应用EQC模型模拟十氯酮在多介质环境中的归宿和迁移通量.结果表明:土壤是十氯酮最大的贮存库,在稳态平衡条件下,残留率达到95.0%;在稳态非平衡条件下,十氯酮单独排放到水体,有37.5%残留在于排放的水体中,其在大气的浓度水平和质量分布均很低,在沉积物中的质量则来自于水体向沉积物的沉降迁移;十氯酮主要通过水体的水平迁移和土壤的厌氧降解输出;十氯酮的主要界面迁移过程是大气向土壤的迁移,其次是水体向沉积物的沉降和大气向水体的迁移.  相似文献   

9.
混汞法采金地区的汞污染研究进展   总被引:6,自引:0,他引:6  
混汞法是一种设备简单、操作简便且应用历史悠久的提金方法,在世界范围内得到了普遍使用,同时也导致了严重的汞污染。本文介绍了混汞法的流程以及汞的释放过程和释放因子;综述了应用混汞法提金的不同国家和地区,对由此引发的大气、水体、生物(包括人体)和土壤汞污染的研究现状,并讨论了采金地区的环境管理政策。  相似文献   

10.
正中国是世界最大的汞排放国,每年的汞排放量高达535 t~([1]),作为《关于汞的水俣公约》缔约国,汞减排压力巨大。据估算,按照《关于汞的水俣公约》规定的义务,中国每年至少须减排汞300 t(以单质汞计),带来巨大的市场需求~([2])。在我国的汞排放源中,燃煤排放和冶金行业排放是重点关注的对象。  相似文献   

11.
Changes in atmospheric mercury deposition are used to evaluate the effectiveness of regulations controlling emissions. This analysis can be complicated by seemingly incongruent data from different model runs, model types, and field measurements. Here we present a case study example that describes how to identify trends in regional scale mercury deposition using best-available information from multiple data sources. To do this, we use data from three atmospheric chemistry models (CMAQ, GEOS-Chem, HYSPLIT) and multiple sediment archives (ombrotrophic bog, headwater lake, coastal salt marsh) from the Bay of Fundy region in Canada. Combined sediment and modeling data indicate that deposition attributable to US and Canadian emissions has declined in recent years, thereby increasing the relative significance of global sources. We estimate that anthropogenic emissions in the US and Canada account for 28-33% of contemporary atmospheric deposition in this region, with the rest from natural (14-32%) and global sources (41-53%).  相似文献   

12.
This paper presents a comprehensive atmospheric global and regional mercury model and its capability in describing the atmospheric cycling of mercury. This is an on-line model (integrated within the Canadian operational environmental forecasting and data assimilation system) which can be used to understand the role of meteorology in mercury cycling (atmospheric pathways), the inter-annual variability of mercury and can be evaluated against observations on global scales. This is due to the fact that the model uses a combination of actual observed and predicted meteorological state of the atmosphere at high resolution to integrate the model as opposed to the climatological approach used in existing global mercury models. The model was integrated and evaluated on global scale using only anthropogenic emissions. North to south gradients in mercury concentrations, seasonal variability, dry and wet deposition and vertical structure are well simulated by the model. The model was used to explain the observed seasonal variations in atmospheric mercury circulation. The results from this study include a global animation of surface air concentrations of total gaseous mercury for 1997.  相似文献   

13.
Anthropogenic mercury emissions in China   总被引:18,自引:0,他引:18  
An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (±236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30×30 min spatial resolution. We estimate that 56% of the Hg in China is released as Hg0, 32% as Hg2+, and 12% as Hgp. Particulate mercury emissions are high in China due to heavy burning of coal in residential and small industrial settings without PM controls. Emissions of Hg2+ from coal-fired power plants are high due to the absence of flue-gas desulfurization units, which tend to dissolve the soluble divalent mercury. Metals smelting operations favor the production of elemental mercury. Much of the Hg is released from small-scale activities in rather remote areas, and therefore the activity levels are quite uncertain. Also, emissions test data for Chinese sources are lacking, causing uncertainties in Hg emission factors and removal efficiencies. Overall, we calculate an uncertainty level of ±44% (95% confidence interval) in the estimate of total emissions. We recommend field testing of coal combustors and smelters in China to improve the accuracy of these estimates.  相似文献   

14.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

15.
Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0–70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.

Implications Although waste combustion is one of major anthropogenic sources of atmospheric mercury emission, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated speciated mercury emissions from the combustions of municipal solid wastes, sewage treatment sludge with/without waste plastics, industrial waste mixtures, waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form in all combustion cases and its concentration in the gas had large fluctuation. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.  相似文献   

16.
Zhang MQ  Zhu YC  Deng RW 《Ambio》2002,31(6):482-484
Mercury emissions from the coal smoke is the main source of anthropogenic discharge and mercury pollution in atmosphere. The calculated total amount of mercury emissions of China in 1995 is approximately 213.8 tonnes, which accounts for c. 5% of estimated total global discharge of 4000 tonnes in the same period. From 1978 to 1995, total coal consumption increased fourfold. Based on these data it is estimated that the mercury emissions will increase at a rate of 5% a year, and the predicted emissions will be 273 tonnes in China in 2000. Controlling and solving mercury emissions from coal combustion are among the most important environmental tasks facing China.  相似文献   

17.
A modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at three receptor locations in New York State. For the nominal scenario, the anthropogenic emission sources (including re-emission of deposited Hg) in New York State, the rest of the contiguous United States, Asia, Europe, and Canada contributed 11-1, 25-9, 13-19, 5-7, and 2-5%, respectively to total Hg deposition at these three receptors. Natural sources contributed 16-4%. The results from the local deposition and long-range transport scenarios varied only slightly from these results. However, there are still uncertainties in our understanding of the atmospheric chemistry of Hg that are likely to affect these estimates of local, regional and global contributions. Comparison of model simulation results with data from the Mercury Deposition Network suggests that local and regional contributions may currently be overestimated.  相似文献   

18.
Mercury (Hg) is a global pollutant since its predominant atmospheric form, elemental Hg, reacts relatively slowly with the more abundant atmospheric oxidants. Comprehensive knowledge on the details of the atmospheric Hg cycle is still lacking, and in particular, there is some uncertainty regarding the atmospherically relevant reduction-oxidation reactions of mercury and its compounds. ECHMERIT is a global online chemical transport model, based on the ECHAM5 global circulation model, with a highly customisable chemistry mechanism designed to facilitate the investigation of both aqueous- and gas-phase atmospheric mercury chemistry. An improved version of the model which includes a new oceanic emission routine has been developed. Results of multiyear model simulations with full atmospheric chemistry have been used to examine the how changes to chemical mechanisms influence the model’s ability to reproduce measured Hg concentrations and deposition flux patterns. The results have also been compared to simple fixed-lifetime tracer simulations to constrain the possible range of atmospheric mercury redox rates. The model provides a new and unique picture of the global cycle of mercury, in that it is online and includes a full atmospheric chemistry module.  相似文献   

19.
Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared.  相似文献   

20.
Waite DT  Snihura AD  Liu Y  Huang GH 《Chemosphere》2002,49(3):341-351
Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号