首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用连续流活性炭炭床处理印染废水生化出水,通过XAD-8/XAD-4吸附树脂将印染废水生化出水中的溶解性有机物分为4类:疏水酸、非酸疏水物质、弱疏水物质和亲水物质,采用超滤膜法测定水样的分子量分布,对印染废水生化出水中不同种类以及不同分子量大小的有机物在煤质炭、椰壳炭2种活性炭动态实验处理过程中的去除特性进行研究。实验结果表明,2种活性炭对该水样中的有机物均有明显的去除效果,其中以煤质炭的处理效果较优。煤质炭吸附疏水性和亲水性有机物均有明显的处理效果,对非酸疏水物质和弱疏水有机物的吸附效果较差。煤质炭对分子量<10 k的小分子有机物的吸附效果对实验结果的贡献较大。  相似文献   

2.
Fenton氧化-活性炭吸附耦合处理焦化废水生化尾水的研究   总被引:4,自引:0,他引:4  
研究了Fenton氧化、活性炭吸附、Fenton氧化一活性炭吸附等方法,对焦化废水生化尾水的处理效果,分析了Fenton氧化一活性炭吸附法处理焦化废水生化尾水的工艺条件。结果表明,Fenton氧化与活性炭吸附耦合处理焦化废水生化尾水的最优条件是:H2O2投加量为5mL/L,FeSO4&#183;7H2O投加量为200mg/L,活性炭投加量为2g/L,反应pH=4.0,反应时间为20min。在此条件下,COD去除率可达82.6%,出水水质符合《污水综合排放标准》(GB8978--1996)一级标准。  相似文献   

3.
焦化废水中COD、挥发酚和硫氰化物同步高效去除   总被引:1,自引:0,他引:1  
采用两级膨胀颗粒污泥床(EGSB)反应器在微氧条件下处理焦化废水,考察了该工艺对焦化废水中挥发酚、硫氰化物、氰化物和COD的去除效果。研究结果表明,在进水流量为1 L/h,总水力停留时间(HRT)为24 h的条件下,两级EGSB反应器对COD的去除效果较好。稳定运行时,在进水挥发酚为56.8~185.1 mg/L、硫氰化物为287.1~539.9 mg/L、氰化物为0.17~0.72 mg/L的条件下,系统对其平均去除率分别为99.9%、96.8%和82.6%,出水挥发酚和氰化物均能达到《污水综合排放标准(GB8978-1996)》的一级标准。进水COD浓度在1 084~1 880 mg/L之间,平均去除率为76.9%,出水平均浓度为325 mg/L。  相似文献   

4.
褐煤活性炭吸附处理焦化废水   总被引:5,自引:1,他引:5  
研究褐煤活性炭吸附处理焦化废水的性能,为褐煤活性炭用于废水处理提供理论依据和技术指导。以河南某气化厂的焦化废水为吸附原水,进行褐煤活性炭对酚吸附性能的静态和动态实验。静态实验表明,褐煤活性炭对酚的吸附性能符合弗兰德里希(Freundlich)吸附方程式。在室温条件下,对于150 mL焦化废水,当活性炭的用量为10 g,吸附反应时间为1 h,酚的去除率可达92%以上。动态实验研究表明,当进水酚浓度为3 800 mg/L,吸附1.5 h,活性炭的吸附容量可达21.38 mg/g。水处理的实验研究表明,利用褐煤制备的活性炭,对焦化废水具有良好的处理效果。  相似文献   

5.
活性炭去除水中余氯的研究   总被引:1,自引:0,他引:1  
通过对5种不同活性炭的去除余氯量实验、余氯穿透实验以及化学反应产物Cl-的质量平衡数据,探讨了活性炭去除余氯的性能和机制.活性炭去除余氯是吸附与化学反应共同作用的结果.活性炭与水中余氯接触后的初期,去除余氯以吸附作用为主;达到吸附平衡后,余氯浓度继续下降则是由于化学反应的作用.接触时间越长、余氯初始浓度越高、pH较低,活性炭去除余氯量越大.由Cl-的生成量可以确定化学反应去除余氯量是余氯总去除量的一部分;接触时间越长,活性炭剂量越大,化学反应去除余氯量占余氯总去除量的比例越高.使用粒径<180目活性炭进行余氯去除实验,吸附容量在1~2h即达到饱和.活性炭对余氯吸附量(2h的余氯去除量)的大小与其苯酚值排行相同.苯酚值及碘值较高的煤质炭与余氯有较强的化学反应,果壳炭其次,而椰壳炭的化学性相对稳定.  相似文献   

6.
Fenton组合工艺处理焦化厂生化出水的应用研究   总被引:2,自引:1,他引:1  
比较了Fenton氧化、Fenton氧化+活性炭及Fenton氧化+生物活性炭工艺对焦化厂生化出水的处理效果.结果表明,Fe2+、H2O2的投加量分别为56、27.2 mg/L时,Fenton氧化工艺对水样的UV254、颜色度(VIS380)、COD和总氰均有较好的去除效果;Fenton氧化+活性炭工艺在有效去除UV254、VIS380、COD和总氰的同时,能强化活性炭的吸附效果,并能显著提高水样的生化性能;Fenton氧化+生物活性炭工艺能有效去除UVM254,VIS380、COD与总氰,使出水达到<污水综合排放标准>(GB 8978-1996)一级标准.  相似文献   

7.
颗粒活性炭吸附去除水中三氯乙烯的研究   总被引:2,自引:1,他引:1  
通过吸附容量实验及微型快速穿透(MCRB)实验,考察了7种活性炭对水样中三氯乙烯(TCE)的去除效果.结果表明,表征活性炭对小分子化合物吸附容量的苯酚值可以预测各种活性炭对TCE的吸附容量;国内常用炭型对TCE的吸附性能与国际常用炭型相当.性价比更高;不同TCE初始浓度及低浓度甲醇对TCE吸附容量没有明显的影响,而自来水中天然有机物(NOM)的竞争吸附作用会降低活性炭对TCE的吸附容量;MCRB实验数据提供了较为准确的TCE平衡吸附容量.验证了各种活性炭对TCE的相对吸附容量,并显示使用2个串联活性炭炭床可以提高吸附容量利用率,节省处理费用,确保出水达标.  相似文献   

8.
随着甲基叔丁基醚(MTBE)作为汽油添加剂被持续大量使用,其已成为一种地下水中常见的有机污染物。本文通过纯净水、自来水和地下水中MTBE的平衡吸附容量和微型快速穿透实验(MCRB),比较了5种不同种类活性炭对MTBE的吸附性能。结果显示,苯酚值可准确预测活性炭样品对MTBE的平衡吸附容量大小次序,而丹宁酸值则可大致估计活性炭在实际处理应用时的吸附速度和吸附容量利用率。水样中共存的有机成分降低了活性炭对纯净水中MTBE的吸附容量,在背景TOC较低的去离子水中,活性炭对于MTBE的吸附性能反而比在地下水中降低得更多。穿透实验数据显示双柱串联的处理方式是高效应用活性炭吸附水中MTBE的优选工艺。使用环境友好的竹质活性炭去除地下水中MTBE具有良好的可行性和较高的性价比。  相似文献   

9.
焦化厂A/O出水中的有机污染物分析   总被引:3,自引:0,他引:3  
采用色谱-质谱(GC/MS)联用仪分析和鉴定了上海宝钢焦化厂A/O生化阶段出水的有机污染物组成,共检出各类有机污染物70多种。结合焦化废水专用混凝剂的混凝处理实验结果,指出了各类有机污染物的去除情况。  相似文献   

10.
化学改性活性炭对水中阿特拉津的吸附去除   总被引:2,自引:1,他引:2  
以5 mol/L HNO3,40%NaOH及5%H2O2对活性炭进行化学改性,采用序批式实验研究了活性炭改性前后对阿特拉津(AT)的吸附平衡特性,并以Langmuir和Freundlich模型对吸附等温线进行了拟合。结合活性炭改性前后孔结构和表面化学的变化特征,探讨了不同改性方法对AT吸附去除的影响效应。结果表明:活性炭经5 mol/L HNO3改性后对AT的吸附性能显著降低;而5%H2O2和40%NaOH改性炭对AT的吸附能力较原炭明显增强,且40%NaOH改性炭的吸附能力大于5%H2O2改性炭。原炭及改性炭对AT的吸附等温线均符合Langmuir模型。HNO3改性炭对AT吸附的降低主要是由于表面酸性基团的增加引起的;H2O2改性炭对AT吸附能力的提高主要是由于比表面积的增大引起的;而NaOH改性炭对AT吸附能力的提高是由比表面积增大和表面碱性基团增加共同作用的结果。几种改性炭和原炭对AT去除率的大小顺序依次为:NaOH改性炭>H2O2改性炭>原炭>HNO3改性炭。  相似文献   

11.
对某焦化厂生化出水进行了除氰研究。对硫酸亚铁混凝除氰法进行了优化,采用沉淀净化法对其出水进行深度处理,考察了工艺中不同影响因素对总氰化物(TCN)去除效果的影响。结果表明,硫酸亚铁混凝除氰法的最佳反应条件为pH 5.00、FeSO4·7H2O投加量500mg/L、反应时间15min、沉淀时间30min;在此条件下,当原水TCN质量浓度为3.1~4.1mg/L时,出水TCN质量浓度达到0.60~0.70mg/L,需作进一步的深度处理。采用沉淀净化法处理硫酸亚铁混凝除氰法出水的最佳反应条件为先同时投加药剂A和药剂B,投加量分别为150、0.75mg/L,反应15min后,再按2mg/L投加药剂C,继续反应3min,最终出水TCN质量浓度低于0.1mg/L,达到《炼焦化学工业污染物排放标准》(GB 16171—2012)要求(氰化物排放限值为0.2mg/L);在此条件下,单位废水处理的药剂成本合计约为0.25元/t。  相似文献   

12.
焦化废水生物处理尾水的活性炭吸附及条件优化研究   总被引:6,自引:0,他引:6  
国内焦化企业废水生物处理尾水中COD、色度等指标超标的现象大多是由残留的难降解有机物造成的。针对这种现象,通过采用不同种类和孔结构的活性炭、改变炭表面化学性质、优化吸附环境3种方式对生物处理尾水中的COD成分进行强化吸附,考察炭型、表面化学性质及pH值等因素的影响,以明确焦化废水吸附法深度处理的合理炭型及其优化的条件。把已稳定运行的1 320 m3/d处理规模焦化废水A/O/H/O工艺实际工程生物处理尾水作为研究对象,试验了13种活性炭品种的吸附去除COD及色度的效果,发现甲基蓝值和丹宁酸值大的炭型其吸附容量高;而某一种炭样的吸附特性实验中,不同化学改性时表面酸性官能团含量少的活性炭有利于提高其吸附容量,低pH值条件的吸附能力高于碱性条件,曝气混合方式能够缩短吸附平衡时间。经过优选的活性炭在适宜的反应条件下能够将焦化废水生物处理尾水中的COD值及色度值分别降低至60 mg/L及20倍以下,在较低的运行费用条件下使出水达到工业循环冷却水的水质要求。  相似文献   

13.
强化活性炭吸附技术深度处理焦化废水的可行性研究   总被引:3,自引:0,他引:3  
采用混凝沉淀、活性炭吸附以及混凝沉淀 活性炭吸附工艺对焦化厂生化出水进行深度处理.单独混凝沉淀或活性炭吸附均可以将水样中COD降到100 mg/L以下,达到国家污水一级排放标准和冷却用水建议标准.活性炭根据不同的材质和进水而表现出不同的吸附性能,对于焦化厂生化出水,煤质炭Ⅰ和果壳炭均表现出良好的吸附效果,并使出水COD<100 mg/L,但处理成本较高.混凝沉淀 活性炭吸附工艺充分发挥适合去除大分子污染物的混凝沉淀与适宜去除小分子污染物的活性炭吸附技术两者的协同增效作用,吸附单元采用廉价的煤质炭,使出水水质达到个别生产或生活用水回用标准,并且降低深度处理成本.研究结果表明,混凝沉淀 活性炭吸附作为焦化厂生化出水回用工艺是经济可行的.  相似文献   

14.
混凝-IBAC深度处理焦化废水的试验研究   总被引:3,自引:1,他引:3  
以哈尔滨某气化厂焦化废水为目标,探讨混凝-固定化生物活性炭(IBAC)工艺对哈尔滨气化厂焦化废水进行深度处理的净化效能及其可行性.采用筛选、驯化的脱酚菌,对活性炭(GAC)进行固定,使之形成固定化生物活性炭.当该工艺进水COD<800 mg/L时,出水COD在100 mg/L以下,平均去除率在80%左右;当进水总酚在200 mg/L以下时,出水的总酚含量基本在20 mg/L以下;当进水氨氮浓度在75 mg/L以下时,出水氨氮浓度在25 mg/L以下.焦化废水中各污染物指标经混凝-IBAC工艺深度处理后可达污水综合排放标准(GB 8978-1996)的二级标准.  相似文献   

15.
新型活性炭固定化产品的制备及其处理焦化废水的特性   总被引:1,自引:0,他引:1  
为解决优势菌种工程应用,研究不同固定化方法、载体和结构的固定化产品对焦化废水的降解特性。用活性炭粉末吸附菌种后,与聚乙烯醇和海藻酸钠混合制备了新型固定化球;用聚乙烯醇和海藻酸钠包埋吸附菌种的活性炭纤维毡,与立体弹性塑料填料连用,制备出3种不同形状的活性炭纤维膜片固定化产品复合填料。将游离菌和制备的4种活性炭固定化产品投入A/A/O工艺系统平行实验,考察处理焦化废水的效果。结果表明,活性炭纤维膜片固定化产品复合填料对焦化废水的降解能力优于其他固定化产品:缺氧池出水硝酸盐氮和亚硝酸盐氮浓度分别稳定在1.96 mg/L和0.49 mg/L,未产生氮的累积现象,COD去除率可达到60.92%。好氧池COD和氨氮降解效率分别为78.83%和85.52%,苯酚、氰化物降解效率均为97%以上。  相似文献   

16.
采用臭氧/活性炭联合工艺对焦化废水A2/O出水进行深度处理。考察了溶液初始pH值、臭氧投加量、活性炭投加量及使用次数、反应时间对焦化废水处理效果的影响。实验结果表明,活性炭的使用可显著提高臭氧对焦化废水COD的去除率,在溶液初始pH值为10.25、臭氧投加量为7.5 mg/min、活性炭投加量50 g/L、反应时间为30 min条件下,COD去除率达到73.51%。同时,在活性炭重复使用10次时,COD去除率为70.85%,仅降低了2.66%。  相似文献   

17.
活性炭对含铅废水吸附特性研究   总被引:5,自引:6,他引:5  
采用静态法用活性炭吸附处理含铅废水,考察了活性炭对含铅废水的吸附特性。结果表明:活性炭对铅离子吸附平衡时间为100 m in;吸附等温方程为:Ce/qe=0.4298+0.0594Ce(25℃),该方程符合Langmu ir型吸附模式,不同温度下吸附平衡参数0RL1,表示该吸附为有利吸附。实验数据应用数学模型拟合,二级相关系数R2=0.9998,显示吸附过程动力学与二级动力学模型相关性较好;计算不同温度下各热力学参数:△Hθ大于零、△Gθ小于零,证实该吸附过程是一个自发吸热过程。△Sθ大于零,表明铅离子在固液界面有序性减小、混乱度增大。△Hθ值很小,说明该过程为物理吸附。  相似文献   

18.
磺胺类抗生素的活性炭吸附过程研究   总被引:2,自引:1,他引:1  
采用煤质活性炭对3种磺胺类抗生素(浓度在1~2 mg/L之间)的吸附处理过程做了深入研究。结果表明,3种磺胺类抗生素在2~3 h之内可以达到吸附平衡;准一级动力学对其吸附动力学的模拟结果良好,且SMZ、SM1和SM2的一级吸附动力学常数k1分别为0.029、0.024和0.017 min-1,3种抗生素的平衡吸附容量分别为3.75、3.23和2.95 mg/g,SMZ的平衡吸附容量最大,最先达到吸附平衡,且平衡浓度也最低。3种磺胺类抗生素的吸附过程中,吸附前期的阻力主要是内扩散,而吸附后期较低浓度的抗生素吸附过程的阻力主要来自于膜扩散;采用Freundlich等温线方程描述3种磺胺类抗生素的吸附过程更为合理。  相似文献   

19.
选择YT-1000型活性炭纤维(ACF)作为催化剂,考察ACF与O3协同作用催化降解水溶液中4-氯酚的最佳反应条件,并将该条件应用于焦化废水生物处理尾水中难降解有机污染物的催化氧化。ACF表面具有丰富的微孔结构,对4-氯酚有良好的吸附作用,在动力学上提高了其与O3反应的起始浓度,并且在ACF表面含氧、含氮等基团的催化作用下发生氧化反应,1 L浓度为100 mg/L的4-氯酚水样中投加2 g ACF反应6 min时,吸附作用对TOC的去除率为43.4%,而ACF协同O3作用时的TOC去除率提高到72.5%,协同增效作用为67.1%;在选定的反应条件下,ACF协同O3降解焦化废水生物处理尾水,60 min时的TOC与色度的去除率分别达到56.8%和96.3%。上述研究过程证明了吸附作用与催化作用的协同能有效降解生物过程不能降解的焦化废水中惰性有机污染物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号