首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
钙化合物的种类对脱氯特性的影响   总被引:9,自引:0,他引:9  
以PVC为HCl的释放源,采用热重法对不同气氛下各种钙化合物的脱氯特性进行了研究,探讨了各种钙化物的脱氯机理以及脱氯效率。结果表明和PVC作为氯化氢的释放源是可行的。3种钙化物中氢氧化钙的脱氯效果最好。氧化钙与氢氧化钙的脱氯机理基本相似。各种钙化物在不同气氛下的脱氯机理是不同的。燃烧状态下,在高温段钙化物脱氯产物氯化钙有分解迹象。  相似文献   

2.
酸性体系中Pd/PPy/foam-Ni电极电化学还原三氯甲烷   总被引:2,自引:0,他引:2  
孙治荣  葛慧  胡翔  彭永臻 《环境科学》2009,30(2):439-444
在沉积电流密度5 mA·cm-2,沉积时间40 min条件下,通过电沉积方法制备Pd/PPy/泡沫镍(foam-Ni)电极,以Pd/PPy/foam-Ni电极为阴极研究酸性体系中三氯甲烷的电化学还原脱氯,实验在室温条件下进行.采用循环伏安法对电极进行测试,Pd/PPy/foam-Ni电极在-500 mV (vs Hg/Hg2SO4)左右获得很大的氢吸附峰电流值,峰电流值为-100 mA.扫描电镜(SEM)分析表明,聚吡咯的引入改变了Pd在电极表面的沉积形态,使电极表面具有很好的空间延伸性.在酸性体系中进行Pd/PPy/foam-Ni电极对三氯甲烷的电化学还原脱氯实验,结果表明,综合考虑三氯甲烷去除率及脱氯过程电流效率,在保证脱氯过程电流效率为44.17%的条件下,三氯甲烷的去除率为49.23%,此时最佳脱氯电流密度为0.05 mA·cm-2,最佳脱氯时间为180 min,实现了在酸性水溶液体系中,低初始浓度三氯甲烷较好的脱氯效果.  相似文献   

3.
Pd-Ni/GC电极电化学还原水中三氯甲烷的研究   总被引:2,自引:0,他引:2  
孙治荣  李保华  胡翔  石敏  彭永臻 《环境科学》2008,29(5):1249-1254
通过电沉积法在玻碳板(GC)电极上负载钯镍双金属,并利用正交实验对其进行循环伏安(CV)研究. CV结果表明,钯镍双金属比钯、镍单金属具有更大的氢吸附峰值,可以在- 500 mV(以Hg/Hg2SO4 为参比电极)左右获得- 24.83 mA的氢吸附峰.扫描电镜分析(SEM)表明,镍的加入改变了钯颗粒在GC表面的分布形态,钯镍双金属颗粒形貌明显不同于钯、镍单金属颗粒,钯镍双金属颗粒粒径介于钯、镍单金属颗粒粒径之间.实验考察了脱氯电流、脱氯时间对三氯甲烷去除率的影响.三氯甲烷的去除率随脱氯电流的增大而增大,随脱氯时间的延长而提高.在优化条件下制备的Pd-Ni/GC电极在0.5 mA、180 min的脱氯条件下对三氯甲烷的去除率为42.53%.可以推测,随着脱氯时间的继续延长,三氯甲烷去除率可得到进一步提高.  相似文献   

4.
本文介绍从水稻土分离得一株可利用单氯乙酸和二氯乙酸作唯一碳源的假单胞菌No.66。该菌在二氯乙酸或单氯乙酸基质上生长时,会释放氯离子,并能使二氯乙酸为碳源的基质之pH值由7降至5以下。No.66菌适宜生长的氯乙酸浓度为0.4—0.5%,适宜脱氯的pH为6.0。所产生的脱氯酶与碳源种类有关。粗脱氯酶液在4℃进行聚丙烯酰胺凝胶(10.5%)电泳呈现一条酶活力带,该酶不仅能使单氯乙酸和二氯乙酸脱氯,而且也能使三氯乙酸脱氯。  相似文献   

5.
Ni-Fe/泡沫镍催化还原体系脱氯工艺参数的优化及表征   总被引:1,自引:0,他引:1  
以泡沫镍做载体,采用电沉积法制备出镍/铁/泡沫镍双金属催化还原剂,并对目标污染物氯乙酸进行了脱氯研究,分析了催化还原剂在制备过程中沉积液浓度、电流密度对催化活性的影响,采用扫描电子显微镜对双金属体系表征以观察所制备的催化还原剂的表面形貌,可以观察到采用电沉积制备的Ni/Fe-泡沫镍双金属还原剂在基体泡沫镍上分布均匀、密集、呈针状结构,在一定电流密度下,沉积60 min的情况下无团聚现象。研究表明,本研究所制备的镍-铁/泡沫镍双金属催化还原剂对氯乙酸具有良好的脱氯效果。  相似文献   

6.
二元金属体系对水中多氯有机物的催化还原脱氯特性   总被引:46,自引:2,他引:44  
采用二元金属作为还原和催化剂,对水中三氯甲烷、四氯化碳和三氯乙烯的还原特性进行了实验研究。结果表明,Fe/Pd和Fe/Ni体系对所有3种有机物具有良好的催化脱氯特性,30min内脱氯率大于85%。对三氯甲烷,仅用零价铁即可达到近80%的脱氯效率。水中的铁浓度和pH值在反应初期随反应时间而增高,反应后期却降低,文中对此原因作了理论分析。  相似文献   

7.
强化脱氮地下渗滤系统处理生活污水的研究   总被引:1,自引:0,他引:1  
王秋慧  邵坚  邹仲勋 《环境科技》2008,21(6):40-42,46
通过在渗滤沟底部填充一层铁炭混合物而改造成的强化脱氮地下渗滤系统。结果表明,强化脱氮地下渗滤系统对生活污水具有良好的处理效果,在水力负荷为2cm/d情况下,对COD的去除率在92%以上,对TP的去除率在99%CA上,对TN的去除率达到了80%。因此把铁炭等化学脱氮法结合到地下渗滤系统中,能大大提高地下渗滤系统的脱氮效果,为解决地下渗滤系统脱氮效果差的问题提供了新的思路及途径。  相似文献   

8.
以Ir O2/Ti为阳极,Fe为阴极,研究了电化学降解四氯化碳(Carbon Tetrachloride,CT)的性能,重点研究了槽电压、极板间距、溶液的初始p H、电解质种类及浓度等因素对CT处理效果的影响.结果表明:槽电压为3 V,极板间距为50 mm,初始p H为4.5,电解质Na2SO4浓度为10mmol·L~(-1)时,CT的降解效果最佳,3 h内CT(1 mg·L~(-1))的去除率可达68.6%.运用循环伏安法(Cyclic Voltammetry,CV)研究了CT的电化学降解行为,并对降解机理进行初步推测,发现阴极还原脱氯是CT电化学降解的主要途径,CT还原脱氯的产物主要是三氯甲烷(Chloroform,CF)和二氯甲烷(Dichloromethane,DCM).  相似文献   

9.
氯代芳香化合物的生物降解机理探讨   总被引:2,自引:0,他引:2  
对生物降解氯代芳香化合物的研究现状及其应用前景进行综述,分析了氯代芳香化合物的结构与其生物降解性的关系,降解机理包括氧化脱氯机理、还原脱氯机理及共代谢作用机理。  相似文献   

10.
氯酚类物质中,2,4-二氯苯酚(2,4-DCP)是一种广泛存在于自然界中的含氯有机物,具有遗传毒性、致癌性,可能会造成严重的环境问题。目前用于去除2,4-DCP含氯有机污染物的方法均存在一定的缺陷。采用电沉积法将钯(Pd)负载在二氧化钛(TiO_2)纳米管上作为阴极,通过Ti片阳极氧化的方式合成TiO_2NTs/Ti载体作为阳极,制备了一种新型的载Pd电极Pd-TiO_2NTs/Ti,用于2,4-DCP的脱氯,并通过对2,4-DCP进行电催化加氢脱氯试验考察了不同pH值和电流条件下对2,4-DCP的脱氯效果。试验结果表明:在pH值为5、电流为50 mA的条件下,经过90 min反应,2,4-DCP的脱氯效率达到91.5%,可为实际废水处理中2,4-DCP等氯酚类物质的去除提供新的思路。  相似文献   

11.
Co-inhibition of methanogens for methane mitigation in biodegradable wastes   总被引:2,自引:0,他引:2  
The inhibition effects and mechanisms of chlorinated methane and acetylene on methanogenesis in the anaerobic digestion process of the biodegradable wastes were investigated.It was found that both chloroform and acetylene could effectively inhibit methanogens while the biodegradability of the wastes was not affected.Acetylene inhibited the activity of methanogens,while chloroform inhibited metabolic process of methanogenesis.A central composite design (CCD) and response surface regression analysis (RSREG) were employed to determine the optimum conditions and interaction effects of chloroform and acetylene in terms of inhibition efficiency,production of volatile fatty acids and molar ratio of propionic acid to acetic acid.Chloroform had significant effect on enhancing the production of VFA (F = 121.3;p<0.01),and acetylene promoted the inhibition efficiency (F = 99.15;p<0.05) more effectively than chloroform (F = 9.72;p>0.05).In addition,a maximum molar ratio of propionic acid to acetic acid of 1.208 was estimated under the optimum conditions of chloroform concentration of 9.05 mg/kg and acetylene concentration of 3.6×10-3 (V/V).Hence,methanogens in the wastes can be inhibited while the stabilization process of the biodegradable wastes can still work well,as propionic acid generated during the inhibition process could hardly be utilized by methanogens.  相似文献   

12.
为提高城市污泥厌氧消化产甲烷效率,除适量添加餐厨垃圾以提高有机质外,还在污泥中加入了机械加工企业产生的废铁屑,中温(39±1)℃下厌氧消化30 d,同时与加入等量纯铁粉对比,考察废铁屑和纯铁粉的产甲烷效率.结果 表明:废铁屑组和纯铁粉组的累积产甲烷量分别达到340.33,336.52 mL/g,分别比不外加任何铁元素的...  相似文献   

13.
应用微电解法预处理磷霉素钠制药废水   总被引:1,自引:0,他引:1  
采用微电解法预处理磷霉素钠制药废水是一种行之有效的方法。本试验选用铸铁屑、粒状活性炭作为基本原料,分别考察了铁炭比、进水pH值、反应时间、反应温度等因素对废水处理效率的影响。经试验得到最佳工艺条件为:铁炭比为(5~9):1,进水pH值=4,铁屑加入量为(4~5)g/100mL废水,温度为30℃,CODcr的去除率能达到40%~50%。  相似文献   

14.
Six common algal fatty acids (FAs) with different numbers of double bonds, lipophilic fractions and proteins extracted from the diatom Navicula pelliculosa and algal cells were chlorinated to evaluate their potential in generating disinfection by-products (DBPs). The result showed that the more double bonds in the FAs, the higher the amounts of chloroform and dichloroacetic acid (DCAA) produced, but such a pattern was not observed for trichloroacetic acid (TCAA). Based on the previously reported composition of fatty acids in algal lipids, the DBP generation potentials of algal lipids were calculated. These predicted values were much lower than those measured in the chlorinated algal lipophilic fraction, suggesting unknown lipophilic fraction(s) served as potent DBPs precursors. Another calculation attempted to predict DBP production in algal cells based on algal lipid and protein composition, given quantified measured DBP production per unit algal lipid and proteins. The analysis showed that the observed DBP production was similar to that predicted (< 35% difference), suggesting that algal biochemical compositions may serve as a bioindicator for preliminary estimation of chloroform, DCAA and TCAA formation upon chlorinating algae.  相似文献   

15.
氯代烃类挥发性有机物在土壤包气带中的垂向迁移是该类污染物呼吸暴露风险的重要途径.为探究氯代烃在土壤包气带中的垂向迁移规律,通过室内土柱模拟试验,研究土壤包气带含水率对不同氯代烃〔TCE(三氯乙烯)、PCE(四氯乙烯)〕气相扩散速率的影响,并通过线性拟合筛选出更准确的气相有效扩散系数预测模型.结果表明,土壤含水率与氯代烃气相有效扩散系数呈显著负相关〔R=-0.89,P < 0.01,n=7(TCE);R=-0.86,P < 0.01,n=7(PCE)〕.随着土壤含水率由0.5%增至40.0%,TCE气相有效扩散系数(DT)由0.035 9 cm2/s降至0.002 5 cm2/s,平衡时间由13 h增至91 h,平衡时气体浓度由4.22 g/m3降至0.31 g/m3;PCE气相有效扩散系数(DP)由0.033 9 cm2/s降至0.001 1 cm2/s,平衡时间由15 h增至103 h,平衡时气体浓度由3.01 g/m3降至0.12 g/m3.与Penman模型、Marshall模型模拟值相比,Millington-Quirk模型模拟值与氯代烃气相有效扩散系数实测值的拟合程度更好(R>0.95,P < 0.01,n=7).研究显示,土壤包气带含水率的增加对氯代烃气相扩散有明显的抑制作用.   相似文献   

16.
氯代烃在铜电极上的电还原特性和还原机理   总被引:7,自引:1,他引:6  
采用循环伏安法,对氯代烃在铜电极表面上的电还原特性进行了研究,评价了它们在铜电极上的电还原反应活性,分析了此类化合物在铜电极上的还原机理,并且讨论了电还原反应活性和此类化合物结构之间的关系.结果表明,氯代烷烃和部分氯代芳烃在铜电极表面有还原电位,能在铜电极表面被直接还原.氯代芳烃不易在铜电极上被直接还原.实验结果为催化铁内电解法提供了理论依据.  相似文献   

17.
京密引水中不同形态天然有机物的卤代活性   总被引:5,自引:0,他引:5       下载免费PDF全文
用过滤、XAD-8和XAD-4树脂串联吸附等方法将京密引水中的天然有机物定量分离为悬浮固体、憎水有机物、腐殖酸类化合物,XAD-4酸和其它亲水有机物。分别对不同形态有机物进行氯化处理,测定了产物中的挥发性卤代烃。结果表明,京密引水中天然有机物的主要挥发性氯化产物是氯仿,此外还生成一溴、二溴氯甲烷及少量溴仿。溶解态腐殖酸类化合物的悬浮固态和悬浮固态有机物是生成氯仿的最主要母体。亲水有机酸也具有较高的卤代活性,而其它有机成分则表现出相对惰性。  相似文献   

18.
引滦水中不同形态天然有机物的卤代活性   总被引:14,自引:0,他引:14  
用过滤、XAD树脂吸附和阴离子树脂吸附等方法将引滦水中的天然有机物分离为悬浮态、憎水化合物、腐殖酸类化合物、非腐殖酸类阴离子化合物和其它亲水化合物。分别对不同形态有机物进行氯化处理,测定了产物中的挥发性卤代烃。结果表明,引滦水中天然有机物的主要氯化产物是氯仿和一溴二氯甲烷,此外还生成少量二溴一氯甲烷。悬浮态有机物和溶解态腐殖酸是生成氯仿的最重要母体,一溴二氯甲烷和二溴一氯甲烷则大多来源于溶解态腐殖  相似文献   

19.
以哈尔滨某城市污水处理厂中的芳香烃(苯,甲苯,二甲苯)和氯代烃(三氯甲烷,四氯化碳三氯乙烯,四氯乙烯)为研究对象,应用不同的数学模型计算了在不同季节条件下其在格栅、初沉池、生化池(厌氧段和曝气段)、二沉池处理单元中的逸散速率.结果表明,芳香烃和氯代烃在生化池逸散速率最高,苯和三氯乙烯的逸散速率分别为1.92~5.22g/s和16.94~18.8g/s.芳香烃逸散速率不符合《大气污染物综合排放标准(GB16297-1996)》.芳香烃的逸散速率在生化池中下降很快,而氯代烃的逸散速率比较稳定.芳香烃和氯代烃在格栅的逸散速率最低,二甲苯和三氯甲烷的逸散速率分别为12.94×10-6~17.24×10-6g/s和1.88×10-6~2.58×10-6g/s.在沉淀池中,芳香烃和氯代烃春季逸散速率平均为夏季的1.7倍.春季二沉池苯、甲苯和二甲苯的逸散速率分别为初沉池的59.2%,53.3%和4.5%;而二沉池氯代烃逸散速率增加了13%.  相似文献   

20.
以锗烟尘氯化蒸馏后的废盐酸为原料,以废铁为还原剂,使废酸中的有价金属锗以还原态沉淀富集在渣中,强化氧化氯化蒸馏回收四氯化锗,锗的综合回收率达94.10%。同时生产净水剂用液体氯化铁产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号