首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

2.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

3.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

4.
Enrichment culturing of sludge taken from an industrial wastewater treatment pond led to the identification of a bacterium (Klebsiella jilinsis H. Zhang) that degrades chlorimuron-ethyl with high efficiency. Klebsiella jilinsis strain 2N3 grows with chlorimuron-ethyl as the sole nitrogen source at the optimal temperature range of 30–35°C and pH values between 6.0–7.0. In liquid medium, the degradation activity was further induced by chlorimuron-ethyl. Degradation rates followed the pesticide degradation kinetic equation at concentrations between 20 and 200 mg L?1. Using initial concentrations of 20 and 100 mg L?1, the degradation rates of chlorimuron-ethyl were 83.5 % and 92.5 % in 12 hours, respectively. At an initial concentration higher than 200 mg L?1, the degradation rate decreased slightly as the concentration increased. The 2N3 strain also degraded the sulfonylurea herbicides ethametsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron, and tribenuron-methyl. This study provides scientific evidence and support for the application of K. jilinsis in bioremediation to reduce environmental pollution.  相似文献   

5.
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl? increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl? at total mineralization was detected when initial diuron concentration was 13.8 mg L?1. For N species, the final concentrations of NO3 ? and NH4 + after 60 min of reaction time were 0.28 and 0.19 mg L?1, respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron.  相似文献   

6.
There is global concern about the effects of decabromodiphenyl ether (BDE209) on environmental and public health. The molecular properties, biosorption, degradation, accumulation, and cellular metabolic effects of BDE209 were investigated in this study to identify the mechanisms involved in the aerobic biodegradation of BDE209. BDE209 is initially absorbed by wall teichoic acid and N-acetylglucosamine side chains in peptidoglycan, and then, BDE209 is transported and debrominated through three pathways, giving tri-, hepta-, octa-, and nona-bromodiphenyl ethers. The C–C bond energies decrease as the number of bromine atoms on the diphenyl decreases. Polybrominated diphenyl ethers (PBDEs) inhibit protein expression or accelerate protein degradation and increase membrane permeability and the release of Cl?, Na+, NH4 +, arabinose, proteins, acetic acid, and oxalic acid. However, PBDEs increase the amounts of K+, Mg2+, PO4 3?, SO4 2?, and NO3 ? assimilated. The biosorption, degradation, accumulation, and removal efficiencies when Brevibacillus brevis (1 g L?1) was exposed to BDE209 (0.5 mg L?1) for 7 days were 7.4, 69.5, 16.3, and 94.6 %, respectively.  相似文献   

7.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

8.
By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L?1, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L?1, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L?1, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L?1 and 50 mg L?1. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.  相似文献   

9.
Sorption and desorption of aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid) were compared to that of the structurally similar herbicide picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) in three soils of differing origin and composition to determine if picloram data is representative of aminocyclopyrachlor behavior in soil. Aminocyclopyrachlor and picloram batch sorption data fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram (1/n = 0.80–0.90). Freundlich sorption coefficients (K f) for aminocyclopyrachlor were lowest in the eroded and depositional Minnesota soils (0.04 and 0.12 μmol (1–1/n) L1/n kg?1) and the highest in Molokai soil (0.31 μmol (1–1/n) L1/n kg?1). For picloram, K f was lower in the eroded (0.28 μmol (1–1/n) L1/n kg?1) as compared to the depositional Minnesota soil (0.75 μmol (1–1/n) L1/n kg?1). Comparing soil to soil, K f for picloram was consistently higher than those found for aminocyclopyrachlor. Desorption of aminocyclopyrachlor and picloram was hysteretic on all three soils. With regard to the theoretical leaching potential based on groundwater ubiquity score (GUS), leaching potential of both herbicides was considered to be similar. Aminocyclopyrachlor would be ranked as leacher in all three soils if t1/2 was > 12.7 days. To be ranked as non-leacher in all three soils, aminocyclopyrachlor t1/2 would have to be <3.3 days. Calculated half-life that would rank picloram as leacher was calculated to be ~15.6 d. Using the current information for aminocycloprachlor, or using picloram data as representative of aminocycloprachlor behavior, scientists can now more accurately predict the potential for offsite transport of aminocycloprachlor.  相似文献   

10.
Trichoderma species, the causal agents of green mould disease, induce great losses in Agaricus bisporus farms. Fungicides are widely used to control mushroom diseases although green mould control is encumbered with difficulties. The aims of this study were, therefore, to research in vitro toxicity of several commercial fungicides to Trichoderma isolates originating from Serbian and Bosnia-Herzegovina farms, and to evaluate the effects of pH and light on their growth. The majority of isolates demonstrated optimal growth at pH 5.0, and the rest at pH 6.0. A few isolates also grew well at pH 7. The weakest mycelial growth was noted at pH 8.0–9.0. Generally, light had an inhibitory effect on the growth of tested isolates. The isolates showed the highest susceptibility to chlorothalonil and carbendazim (ED50 less than 1 mg L?1), and were less sensitive to iprodione (ED50 ranged 0.84–6.72 mg L?1), weakly resistant to thiophanate-methyl (ED50 = 3.75–24.13 mg L?1), and resistant to trifloxystrobin (ED50 = 10.25–178.23 mg L?1). Considering the toxicity of fungicides to A. bisporus, carbendazim showed the best selective toxicity (0.02), iprodione and chlorothalonil moderate (0.16), and thiophanate-methyl the lowest (1.24), while trifloxystrobin toxicity to A. bisporus was not tested because of its inefficiency against Trichoderma isolates.  相似文献   

11.
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40?°C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033?U mg?1, 12.2?mmol L?1, 3.3?×?106 s?1, and 2.7?×?108 s?1mol?1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1?h. After treatment of the OP for 8?h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.  相似文献   

12.
The temporal and spatial distribution characteristics of environmental parameters and the phytoplankton community were investigated in October 2010 and January 2011 in the Qinhuai River, Nanjing, China. Results showed that the water quality in the study area was generally poor, and the main parameters exceeding standards (level V) were nitrogen and phosphorus. The observed average concentrations of the total nitrogen (TN) were 4.90 mg?L?1 in autumn and 9.29 mg?L?1 in winter, and those of the total phosphorus (TP) were 0.24 mg?L?1 in autumn and 0.88 mg?L?1 in winter, respectively. Thirty-seven species, 30 genera, and four phyla of phytoplankton were detected in the river. Cyanophyta and Bacillariophyta were the dominant phyla in autumn, with average abundance and biomass of 221.5?×?104?cells?L?1 and 4.41 mg?L?1, respectively. The dominant population in winter was Bacillariophyta, and the average abundance and biomass were 153.4?×?104?cells?L?1 and 6.58 mg?L?1, respectively. The results of canonical correspondence analysis (CCA) between environmental parameters and phytoplankton communities showed that Chlorophyta could tolerate the higher concentrations of the permanganate index, nitrogen, and phosphorus in eutrophic water; Bacillariophyta could adapt well to changing water environments; and the TN/TP ratio had obvious impacts on the distributions of Cyanophyta, Euglenophyta, and some species of Chlorophyta. CCA analyses for autumn and winter data revealed that the main environmental parameters influencing phytoplankton distribution were water temperature, conductivity, and total nitrogen, and the secondary factors were dissolved oxygen, NH4 +–N, NO3–N, TN, CODMn, TN/TP ratio, and oxidation-reduction potential.  相似文献   

13.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

14.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

15.
A series of novel N-alkyl-N-[1-(2-hydroxyphenyl) ethyl]amines were synthesized as potential new agents to control pests. Their structures were confirmed on the basis of IR, NMR and elemental analyses. Six new N-alkyl-N-[1-(2-hydroxyphenyl) ethyl]amines were prepared by reduction of corresponding Schiff bases using sodium borohydride in 80–87 % yields. These compounds were tested for their antifungal activity against two pathogenic fungi viz., Rhizoctonia bataticola ITCC 0482 and Sclerotium rolfsii ITCC 5226 and for insecticidal activity against insects of stored grain pest Callosobruchus analis. Fungicidal bioassay revealed that compound N-Decyl-N-[1-(2-hydroxyphenyl)ethyl]amine, was highly effective against R. bataticola (ED50 6.86 mg L?1) which was comparable with that of commercial fungicide hexaconazole (ED50 6.35 mg L?1). Also compounds N-Heptyl-N-[1-(2-hydroxyphenyl)ethyl]amine, N-Octyl-N-[1-(2-hydroxyphenyl)ethyl]amine and N-Nonyl-N-[1-(2-hydroxyphenyl)ethyl]amine displayed promising fungitoxicity against same pathogen. However, compound N-Heptyl-N-[1-(2-hydroxyphenyl)ethyl]amine was also found to be effective against S. rolfsii (ED50 4.92 mg L?1 as against 1.27 mg L?1 for hexaconazole). Compound N-Hexyl-N-[1-(2-hydroxyphenyl)ethyl]amine was most effective as insecticide followed by compound N-Octyl-N-[1-(2-hydroxyphenyl)ethyl]amine. LC50 values for these compounds were 155.0 and 275.0 mg L?1 respectively as against 36.70 mg L?1 for commercial insecticide dichlorovos. The results obtained from bioassays indicate that this class of compounds can be utilized for the design of new substances endowed with pesticidal activities.  相似文献   

16.
The purpose of this work was to demonstrate that a Fenton (H2O2/Fe) reaction was involved in DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane)] degradation in a culture of Penicillium sp. spiked with FeSO4. A commercial DDT mixture (10% DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], 30% o,p-DDT and 60% of p,p′ -DDT) of 10 mg L? 1 was used. Hydrogen peroxide (H2O2), tartaric acid and oxalic acid were identified at 18 h in culture media, with and without added DDT; this correlated positively with lowering of pH from 5.8 to 2.7. Lower concentrations of oxalic acid and H2O2 (7.9 and 52.6 mg L? 1, respectively) occurred in media with DDT at 30 h, in comparison to that one without DDT mixture (27.9 and 65.3 mg L? 1, respectively), at this time there was maximum degradation (87.7, 91.7 and 94.2%) for DDE, o,p-DDT and p,p′-DDT, respectively. We propose that the degradation of the DDT mixture by Penicillium sp. was through a Fenton reaction (H2O2/Fe) under acidic conditions produced in situ during the fungal culture amended with FeSO4.  相似文献   

17.
Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO2) catalyst was investigated. The effects of feed flow rate, TiO2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R2 ~ 0.964). The addition of 1 mL min?1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ~50 mg L?1, TiO2 ~5 mg L?1 and feed flow rate ~82.5 mL min?1. Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.  相似文献   

18.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

19.
The present study aims to investigate the EDTA catalyzed reduction of nitrate (NO 3 ? ) by zero-valent bimetallic (Fe?CAg) nanoparticles (ZVBMNPs) in aqueous medium and to enumerate the effect of temperature, solution pH, ZVBMNPs dose and EDTA concentration on NO 3 ? reduction. Batch experimental data were generated using a four-factor Box?CBehnken design. Optimization modeling was performed using the response surface method for maximizing the reduction of NO 3 ? by ZVBMNPs. Significance of the independent variables and their interactions were tested by the analysis of variance and t test statistics. The model predicted maximum reduction capacity (340.15?mg?g?1 NO 3 ? ) under the optimum conditions of temperature, 60?°C; pH?4; dose, 1.0?g?l?1; and EDTA concentration, 2.0?mmol?l?1 was very close to the experimental value (338.62?mg?g?1) and about 16?% higher than the experimentally determined capacity (291.32?mg?g?1). Study demonstrated that ZVBMNPs had higher reduction efficiency than Fe0 nanoparticles for NO 3 ? . EDTA significantly enhanced the NO 3 ? reduction by ZVBMNPs. The EDTA catalyzed reduction of NO 3 ? by ZVBMNPs can be employed for the effective decontamination of water.  相似文献   

20.
Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (kobs ) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the kobs value increased from 19.3 to 26 M?1 s?1 and 67 M?1 s?1 when varying the alumina dose from 1 to 2 and 4 g L?1, respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L?1, the kobs values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M?1 s?1, respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M?1 s?1 were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号