首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it.  相似文献   

2.
Abstract

Sensitivity of 24 isolates of Colletotrichum destructivum O’Gara, collected from alfalfa plants in Serbia, to eight selected fungicides, was investigated in this study. Molecular identification and pathogenicity test of isolates tested were also performed. Fungicide sensitivity was evaluated in vitro, using mycelial growth assay method. All isolates exhibited significant pathogenicity, causing necrosis at the alfalfa seedling root tips two days after inoculation. Using the primer pair GSF1-SR1 and by comparing the amplified fragments of the tested isolates with the marker (M), the presence of the amplicon of the expected size of about 900?bp was determined for all isolates. The isolates tested in this study showed different sensitivity towards fungicides in vitro. Mycelial growth was highly inhibited by QoI (quinone outside inhibitors) fungicide pyraclostrobin (mean EC50=0.39?µg mL?1) and by DMI (demethylation-inhibiting) fungicide tebuconazole (mean EC50=0.61?µg mL?1), followed by azoxystrobin (mean EC50=2.83?µg mL?1) and flutriafol (mean EC50=2.11?µg mL?1). Multi-site fungicide chlorothalonil and MBC (methyl benzimidazole carbamate) fungicide thiophanate-methyl evinced moderate inhibition with mean EC50=35.31 and 62.83?µg mL?1, respectively. Thirteen isolates were sensitive to SDHI (succinate dehydrogenase inhibitors) fungicide boscalid and fluxapyroxad, (mean EC50=0.49 and 0.19?µg mL?1, respectively), while the rest of isolates were highly resistant.  相似文献   

3.
Isolates of Cladobotryum dendroides from Serbian mushroom farms and Agaricus bisporus F56 were tested for sensitivity to selected fungicides in vitro. Chlorothalonil was the most toxic fungicide to C. dendroides isolates (EC50 values were below 1.68 mg L? 1). Trifloxystrobin and kresoxim-methyl were not effective in growth inhibition of C. dendroides isolates (EC50 values exceeded 300 mg L? 1). Metalaxyl-M+mancozeb was the most toxic fungicide to strain F56 of A. bisporus, and iprodione the least toxic. The fungicide selectivity indexes for both C. dendroides and A. bisporus indicated that iprodione, chlorothalonil, captan and metalaxyl-M+mancozeb had satisfactory selective fungitoxicity. Iprodione had the best selectivity to both the pathogen and the host, although inferior than prochloraz manganese and carbendazim, fungicides officially recommended for mushroom cultivation in European Union (EU) countries.  相似文献   

4.
ABSTRACT

Thirty-five actinobacterial isolates, obtained from button mushroom (Agaricus bisporus) substrates (i.e., compost in different phases of composting, black peat or casing layer) in Serbia in 2014–2016 were tested in vitro against the causal agents of green mold in cultivated mushroom. Out of six most promising isolates, A06 induced 42.4% in vitro growth inhibition of Trichoderma harzianum T54, and 27.6% inhibition of T. aggressivum f. europaeum T77. The novel strain A06 was identified as Streptomyces flavovirens based on macroscopic and cultural characteristics and 16S rDNA sequence and used in mushroom growing room experiments. Actinobacteria had no negative influence on mycelial growth of the cultivated mushroom in compost in situ. Isolate S. flavovirens A06 enhanced mushroom yield significantly, up to 31.5%. The A06 isolate was more efficient in enhancing yield after inoculation with the compost mold T. aggressivum (26.1%), compared to casing mold T. harzianum (8%). Considering disease incidence, actinobacteria significantly prevented green mold in compost caused by T. aggressivum (6.8%). However, fungicide prochloraz-Mn had a more significant role in reducing symptoms of casing mold, T. harzianum, in comparison with actinobacteria (24.2 and 11.8%, respectively). No significant differences between efficacies of S. flavovirens A06 and the fungicide prochloraz-Mn against T. aggressivum were revealed. These results imply that S. flavovirens A06 can be used to increase mushroom yield and contribute to disease control against the aggressive compost green mold disease caused by Trichoderma aggressivum.  相似文献   

5.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

6.
Mycotoxins occurrence in wheat grains impose risks to human and animal health. The southern Brazil has favorable weather conditions for Fusarium graminearum infections and consequently for mycotoxins accumulation on grains. The goal of this study was to evaluate the behavior of new wheat commercial genotypes to Fusarium Head Blight (FHB), to control performance of new fungicide formulations and their relationship with mycotoxins concentration in grains. The manly mycotoxin occurrence on wheat grains in southern Brazil was deoxynivalenol (DON). Two cultivars showed high DON concentration above the tolerance limits (>3000 μg kg?1). Many other mycotoxins monitored presented concentrations below method detection limit. Satisfactory levels of fungicide effectiveness were achieved against F. graminearum. Some fungicides promoted a satisfactory decrease on DON accumulation in grains. The best results were obtained when prothioconazole was present. SDHI (Succinate dehydrogenase inhibitors) + QoI (Quinone outside inhibitors) fungicides showed benefic effects at FHB control at field, but it did not promote satisfactory reduction on DON contamination. Fungicides can be used satisfactory for FHB control and reduce DON contamination in grains in southern Brazil. The presence of prothioconazole should be recommended. Some genotypes showed high DON concentration and it was not directly related with FHB severity at field.  相似文献   

7.
A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next “green” catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, 1H and 13C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi—Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata—and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L?1). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L?1 in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L?1 and 20 mg L?1. In the concentration of 100 mg L?1, the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L?1, compound 6 showed good activity only against P. cactorum strain (72%).  相似文献   

8.
Fusarium wilt of cucumber caused by the fungus, Fusarium oxysporum, is one of the most destructive soilborne diseases and can result in serious economic loss. No efficient fungicide is currently available to control the disease. The aim of this study was to examine the disease suppression ability of pig manure and sludge composts in peat-based container media and explore the possible disease suppression mechanisms. Pig manure and sewage sludge compost were made in laboratory-scale tanks. Plant growth media were formulated with peat mixture and compost (or 60?°C heated compost) in a 4:1 ratio (v/v). Cucumber seedlings were artificially inoculated with F. oxysporum conidia (5?×?105 conidia mL?1) by the root-dip method. Cucumber Fusarium wilt was effectively suppressed in sludge compost-amended media, while the disease suppression effect of pig manure compost was limited. The ammonia levels in the manure compost-amended media were significantly higher than those of sludge compost-amended media, which could explain its lower disease suppression ability. Heated composts behaved similarly with respect to disease suppression. Adding composts increased microbial biomass, microbial activity, and the microbial diversity of the growth media. PCR-DGGE results indicated that the fungal community had a significant correlation to the disease severity. The artificially inoculated pathogen was retrieved in all treatments and one possible biocontrol agent was identified as a strain of F. oxysporum by phylogenetic analyses. The results indicated that the sludge compost used in this study could be applied as a method for biocontrol of cucumber Fusarium wilt.  相似文献   

9.
10.
Excess fungicides can pose a serious threat to the soil environment. Fungicides can lower the microbiological and biochemical activity of soil and lead to yield declines. Soils contaminated with fungicides have to be remediated to maintain the optimal function of soil ecosystems. This study evaluates the effect of neutralizing substances on soil enzymatic activity and the yield of Triticum aestivum L. in soil contaminated with fungicides. Sandy loam (Eutric Cambisols) with pHKCl 7.0 was contaminated with an aqueous solution of Amistar 250 SC and Falcon 460 EC in the following doses: 0 (soil without fungicide – treated as a control), RD (dose recommended by the manufacturer) and 300?×?RD (dose 300-fold higher than the recommended dose). Soil was supplemented with bentonite and basalt meal at a dose of 10?g kg?1 DM of soil (dry mass of soil). The fungicide dose recommended by the manufacturer did not induce changes in soil enzymatic activity or the yield of T. aestivum L. Our findings indicate that the tested fungicides can be safely applied to protect crops against fungal pathogens. However, when applied at the dose of 300?×?RD, the tested fungicides strongly inhibited soil enzymatic activity and disrupted the growth and development of spring wheat. Soil supplementation with bentonite and basalt meal improved the yield of T. aestivum L., and bentonite was more effective in reducing fungicide stress. The analyzed substances were not highly effective in restoring biochemical homeostasis in soil.  相似文献   

11.
Potential genotoxic/cytotoxic effects of the epoxiconazole/fenpropimorph-based fungicide were investigated using single cell gel electrophoresis and cytogenetic assays: chromosomal aberrations, sister chromatid exchanges, micronuclei and fluorescence in situ hybridization in cultured bovine lymphocytes. No statistically significant elevations of DNA damage and increases in cytogenetic endpoints were seen. However, evident cytotoxic effect presented as a decrease in mitotic and proliferation indices were recorded after exposure of bovine lymphocytes to the fungicide for 24 and 48 h at concentrations ranging from 3 to 15 µg mL?1 (P < 0.05, P < 0.01, P < 0.001). Similarly, for 24 h an inhibition in the cytokinesis block proliferation index (CBPI) was obtained after exposure to the fungicide at concentrations ranging from 1.5 to 15 µg mL?1 (P < 0.01, P < 0.001) in each donor.  相似文献   

12.
The main research objective of this study is to enhance the removal of recalcitrant compounds that are not readily bioavailable due to limiting mass transfer rate between the liquid and gas phases. Four trickle-bed air biofilters (TBABs), loaded with pelletized diatomaceous earth support media, were run at an empty bed residence time (EBRT) of 120 sec. After an acclimation period at constant loading rate (LR) of n-hexane (13.2 g m?3 hr?1) and intermittent feeding of methanol, n-hexane influent LR was then increased in step-wise fashion to 47.7 g m?3 hr?1 for biofilters receiving acidic nutrients (pH 4), and to 36.3 g m?3 hr?1 for biofilters receiving nutrient at pH 7. The results have shown that for TBABs receiving nutrient at pH 4, greater elimination capacities were obtained as compared to TBABs working at pH 7. n-Hexane removal efficiency of more than 84% at LR up to 47.7 g m?3 hr?1 was obtained for pH 4 nutrient-fed biofilters, while for biofilters with nutrients fed at pH 7, the removal efficiency did not exceed 64% for n-hexane LR of 36.3 g m?3 hr?1. The microbial analysis revealed that no fungal community was detected in TBABs run at neutral pH. The fungi communities that were initially acclimating TBABs run at pH 4, namely, Aspergillus niger and Fusarium solani, were not detected at the end of the experiment, while Gibberella moniliformis (Fusarium verticillioides) genus became the dominant species. Gibberella moniliformis (Fusarium verticillioides) was present along all the biofilter media and sustained very high n-hexane elimination at steady-state condition.
Implications:With growing apprehension about sustainability and environmental protection, with limited resources available, and with the passage of the 1990 Amendments to the Clean Air Act, there is more need for using air pollution control techniques that are sound economically and proven environmentally friendly. Biofiltration systems, namely, trickle-bed air biofilters, were for decades recognized as efficient in treating air pollutants. Thus, the application of this technique over a wide industrial spectrum would certainly contribute to reduction of hazardous gas emissions.  相似文献   

13.
To date, most data about the possible genotoxic effect of triazole pesticides are focused on laboratory animals resulting in limited information on further non-target organisms such as cattle. The objective of the present study was to investigate the effect of triazole (tebuconazole/prothioconazole) fungicide formulation on the induction of chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and DNA fragmentation in bovine cultured lymphocytes. Our results showed that the fungicide formulation did not induce significant number of CAs in bovine cells after 24 h treatment. Nevertheless, the dose-dependent reduction of mitotic division was observed, with the strongest effect at 30.0 μg mL?1 in both donors (P < 0.01 and P < 0.001, respectively). Prolonged 48 h exposure caused the increased level of breaks in treated cultures (3.0?15.0 μg mL?1; P < 0.05) and significant decrease in mitotic index (MI). The tested fungicide failed to produce any statistical changes in the SCE frequency neither after 24 h nor 48 h treatment. However, the significant decline of the proliferation index (PI) was observed after 24 h indicating the fungicide influence on cell cycle kinetics. Prolonged 48 h exposure caused cytotoxicity reflecting in lower PI value relative to control mainly at the highest fungicide concentrations (30.0 μg mL?1, P < 0.001). Using painting probes for bovine chromosomes 1, 5 and 7 (BTA1, BTA5 and BTA7) only low levels of aneuploidies were detected. Significant increase of polyploidy cells (P < 0.05) was induced by a 3.0 μg mL?1 dose of the fungicide after 48 h. DNA fragmentation assay didn't reveal the presence of DNA nucleosome ladder in cell cultures at any time (24 h and 48 h) and fungicide concentration.  相似文献   

14.
木糖氧化无色杆菌及混合菌群对多环芳烃的降解特性   总被引:1,自引:1,他引:0  
采用木糖氧化无色杆菌及混合菌降解水中多环芳烃。考察了木糖氧化无色杆菌的降解广谱性及其对多环芳烃混合底物的降解,特别考察了混合菌对具有弱致癌性的■(Chrysene)的降解特性。结果表明,木糖氧化无色杆菌具有较宽的降解谱,对多环芳烃混合底物具有良好降解特性。当蒽、菲、芘和■4种PAHs共存时,木糖氧化无色杆菌对蒽、菲、芘和■的降解效率分别达83%、66%、85%和80%。与单一木糖氧化无色杆菌相比,混合菌对的降解效率较高。尖镰孢菌与木糖氧化无色杆菌、茄镰孢菌与木糖氧化无色杆菌和3株菌同时共存时,■的降解效率分别达87%、88%和86%。  相似文献   

15.
Milk from Indonesian women (n = 4) was analysed for p,p’-DDT and the fungicide, hexachlorobenzene (HCB). p,p’-DDT was found in all of the samples and at levels that are amongst the highest reported anywhere in the world in 3 of the samples. HCB was found in all 4 samples, 1 sample had an exceptionally high level. The high residue of HCB suggested exposure by eating dressed grain, major environmental contamination or direct exposure when handling the fungicide. These are the first data on pesticide residues in milk from Indonesian women which demonstrate general exposure to p,p’-DDT and HCB.  相似文献   

16.

Iprodione (3-(3,5-dichlorophenyl)-N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) bio-assayed against fungi Alternaria brassicicola and Sclerotinia sclerotiorum was found to be highly effective for inhibiting these desapers. Inhibition of A. brassicicola was 100% up to the dose of 75 ppm and for S. sclerotiorum there was 50% inhibition for the same concentration. Formulation of the pesticide was applied @ 500 and 1000 g. a.i./ha on the cabbage crop grown in the fields. Residues in the edible sample of cabbage were analyzed by gas choromatography for the fungicide and its metabolites. The dissipation of residues of the fungicide and its bio-efficacy against two fungi are presented. It dissipated from 3.72 to 0.072 μg/g on cabbage head by 15 days after treatment. The EC50 values of iprodione were found to be 11.5 ppm and 79.4 ppm for A. brassicicola and S. sclerotiorum, respectively. Half-life of iprodione was found to be 3 days for both cabbage head and leaves. The compatibility of the fungicide with a bio agent, T. harzianum was also studied and these two were not found to be compatible.  相似文献   

17.
In the present study, we aimed to assess antioxidant status in erythrocytes in vitro after patulin (PAT) and epicatechin exposure by measuring antioxidant enzymes (superoxide-dismutase – SOD, glutathione peroxidase – GPx and catalase – CAT) and parameters associated with oxidative stress (malondialdehyde – MDA and ROS). We also investigated the effect of PAT on viability and count of lymphocytes and lymphocyte subpopulations in rabbit blood in vitro. Whole blood of rabbits was used for analysis of antioxidant changes in rabbit erythrocytes after epicatechin and PAT treatment (separately or in combination, at concentrations of 0.2; 2; 20; 200?µg mL–1 of epicatechin and 0.5; 5; 10?µg mL–1 of PAT). Whole blood of rabbits was also used for analysis of count and viability of lymphocytes after PAT treatment at concentrations of 10; 25 and 50?µg mL–1. Results from our experiment confirmed the ability of epicatechin to protect cells against oxidative stress and lipoperoxidation. Our findings indicate that mycotoxin PAT in low concentrations did not affect the activity of antioxidant enzymes in erythrocytes of rabbits significantly. Only slight non-significant changes in lymphocytes count after treatment with low doses of PAT in rabbit blood were observed.  相似文献   

18.
Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH3), hydrogen sulfide (H2S), and nitrous oxide (N2O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH3 removal efficiency, but increase outlet N2O concentration. When MC was 67%, the average NH3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H2S removal efficiency dropped from 68.1–90.0% (1–34 days of the test period) to 36.8–63.7% (35–58 days of the test period); and the average outlet N2O concentration increased by 25.5–60.1%. When MC was 55%, the average removal efficiency of NH3, H2S, and N2O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and –18.9 ± 8.1%, respectively; and the average removal efficiency of NH3, H2S, and N2O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and –24.5 ±12.1%, respectively. When MC was 45%, the highest average NH3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N2O removal efficiency for three MDs ranged from –18.8% to –12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH3 and H2S and avoid elevated emission of N2O and large pressure drop, 0.33 m MD at 55% MC is recommended.

Implications: The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH3 and H2S, and to simultaneously prevent elevated emission of N2O and large pressure drop across the media.  相似文献   


19.

Agrochemicals including neonicotinoid insecticides and fungicides are frequently applied as seed treatments on corn, soybeans, and other common row crops. Crops grown from pesticide-treated seed are often directly planted in managed floodplain wetlands and used as a soil disturbance or food resource for wildlife. We quantified invertebrate communities within mid-latitude floodplain wetlands and assessed their response to use of pesticide-treated seeds within the floodplain. We collected and tested aqueous and sediment samples for pesticides in addition to sampling aquatic invertebrates from 22 paired wetlands. Samples were collected twice in 2016 (spring [pre-water level drawdown] and autumn [post-water level flood-up]) followed by a third sampling period (spring 2017). Meanwhile, during the summer of 2016, a portion of study wetlands were planted with either pesticide-treated or untreated corn seed. Neonicotinoid toxic equivalencies (NI-EQs) for sediment (X??=?0.58 μg/kg), water (X??=?0.02 μg/L), and sediment fungicide concentrations (X??=?0.10 μg/kg) were used to assess potential effects on wetland invertebrates. An overall decrease in aquatic insect richness and abundance was associated with greater NI-EQs in wetland water and sediments, as well as with sediment fungicide concentration. Post-treatment, treated wetlands displayed a decrease in insect taxa-richness and abundance before recovering by the spring of 2017. Information on timing and magnitude of aquatic insect declines will be useful when considering the use of seed treatments for wildlife management. More broadly, this study brings attention to how agriculture is used in wetland management and conservation planning.

  相似文献   

20.
The effects of repeated applications of the fungicide triadimefon in agricultural soil on the microbial functional diversity of the soil and on the persistence of the fungicide in the soil were investigated under laboratory conditions. The degradation half-lives of triadimefon at the recommended dosage, simulated by a first-order kinetic model, were 23.90, 22.95, and 21.52 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index (H′) was observed. However, the Simpson index (1/D) and the McIntosh index (U) were obviously reduced (p ≤ 0.05) during the initial 3 days after the first triadimefon application and thereafter, gradually recovered to or exceeded the level of the control soil. A similar trend in variation but with a faster recovery in the 1/D and U was observed after the second and third triadimefon applications, respectively. Taken together, the above results indicate that the repeated application of triadimefon enhanced the degradation rate of the fungicide and the recovery rate of the soil microbial functional diversity. It is concluded that repeated triadimefon applications in soil have a transient or temporary inhibitory effect on soil microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号