首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT

Although biochar addition into the anaerobic digestion of food waste (FW) is an efficient means to enhance methane production, the effects of biochar on various FW components remain unclear. Laboratory batch experiments were conducted to investigate the impact of sewage sludge-derived biochar (SSB) supplementation on the anaerobic digestion (AD) of major FW components, including carbohydrate-rich, protein-rich, and lipid-rich substrates. The lag phase of AD with the carbohydrate-rich substrate was 48.6% shorter when SSB was added, and the cumulative methane yield was 4.74 times higher compared to AD without biochar. SSB supplementation also increased the rate of methane production from the lipid-rich substrate. However, the effect of SSB addition on AD of the protein-rich substrate was minor. Analysis of the microbial communities revealed that methanogen growth was enhanced during AD of the carbohydrate-rich and lipid-rich substrates, but not the protein-rich substrate, following SSB supplementation. Also, the most dominant methanogenic genus varied with the substrates. SSB addition promoted the growth of hydrolytic and fermentative bacteria, particularly phylum Bacteroidetes.

Implications: Biochar supplementation has been studied to overcome the shortcomings of anaerobic digestion (AD). However, the effects of biochar on different substrates remain unclear. This study compared carbohydrate-rich, protein-rich, and lipid-rich substrates in anaerobic digestion with sewage sludge-derived biochar (SSB). SSB supplementation improved methane generation from all but the protein-rich substrate. The study results imply that the effect of SSB addition on AD varied with the substrate due to the substrates underwent different degradation processes with different microbial communities.  相似文献   

2.
The objective of this investigation was to evaluate the anaerobic biodegradability of benzene, toluene, ethylbenzene, ortho-, meta- and para-xylene (BTEX) and trichloroethylene (TCE) in aquifer sediment down gradient of an unlined landfill. The major organic contaminants identified in the shallow unconfined aquifer are cis-dichloroethylene (c-DCE) and toluene. The biodegradative potential of the contaminated aquifer was measured in three sets of microcosms constructed using anaerobic aquifer sediment from three boreholes down gradient of the landfill. The degradability of BTEX and TCE was examined under ambient and amended conditions. TCE was degraded in microcosms with aquifer material from all three boreholes. Toluene biodegradation was inconsistent, exhibiting biodegradation with no lag in one set of microcosms but more limited biodegradation in two additional sets of microcosms. TCE exhibited an inhibitory effect on toluene degradation at one location. The addition of calcium carbonate stimulated TCE biodegradation which was not further stimulated by nutrient addition. TCE was converted to ethylene, a harmless byproduct, in all tests. Benzene, ethylbenzene and xylene isomers were recalcitrant in both ambient and amendment experiments. Biodegradation occurred under methanogenic conditions as methane was produced in all experiments. Bromoethane sulfonic acid (BES), a methanogenic inhibitor, inhibited methane and ethylene production and TCE biodegradation. The results indicate the potential for intrinsic bioremediation of TCE and toluene down gradient of the Wilder's Grove, North Carolina, landfill. The low concentrations of TCE in monitoring wells was consistent with its biodegradation in laboratory microcosms.  相似文献   

3.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   

4.
The goal of this study was to evaluate cadmium and lead accumulation ability of in vitro cultures biomass containing selected edible mushroom species derived from the environment (Laetiporus sulphureus, Imleria badia) and those of commercial origin (Agaricus bisporus). Atomic absorption spectrometry was used to evaluate the content of Cd(II) and Pb(II) on the medium supplemented with Cd(II) or Pb(II), each of them at the same concentration of 5·10?5 M. The highest concentration of Cd(II) ions was determined in the biomass from L. sulphureus in vitro cultures, while the highest concentration of Pb(II) ions was found in the biomass from A. bisporus in vitro cultures. The greatest Cd(II) and Pb(II) accumulation ability in mycelium per dry weight was shown for L. sulphureus. Among the test species, biomass of A. bisporus showed the lowest ability for the bioaccumulation of Cd(II); however, comparable ability for the remediation of Pb(II) was provided by the biomasses from A. bisporus and I. badia in vitro cultures. The results confirm the possibility of using these mushroom species for remediation and indicate the relationship between bioaccumulation of heavy metals and the test species.  相似文献   

5.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   

6.

The denaturing gradient gel electrophoresis (DGGE) method was applied to determine the relative genetic complexity of microbial communities in flooded paddy soil treated with herbicide quinclorac (3,7-dichloro-8-quinoline-carboylic acid). The results obtained showed a significant effect of quinclorac on the development of bacterial populations in soils contaminated with different concentrations of the herbicide at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of the quinclorac differed obviously with increasing incubation time within the early 8 weeks. The scale of differences in banding patterns-showed that the microbial community structures of the quinclorac-treated and non-quinclorac-treated soils were not significantly different after 21 weeks of incubation. Quantification, as demonstrated in this paper, was studied by establishing dose-response relationships. Significant pattern variations were quantified. Prominent DGGE bands were excised, cloned and sequenced to gain insight into the identities of predominant bacterial populations. The majority of DGGE band sequences were related to bacterial genera Clostridium, Sphingobacterium, Xanthomonas and Rhodococcus.  相似文献   

7.
Few studies have been made regarding carbonyl concentrations in Monterrey, México. The Monterrey Metropolitan Area (MMA) has the third largest population in the country and has increasing pollution issues. The concentrations of 10 aldehydes and two ketones were measured in the MMA, in the spring and fall of 2011 and 2012. Formaldehyde (16–42 ppbv) was the most abundant carbonyl, followed by acetaldehyde (5–15 ppbv) and acetone (7–15 ppbv). The concentrations showed marked diurnal trends with maximum values between 10:00 a.m. and 2:00 p.m., when photochemical activity is intense. Thus, secondary production of carbonyls is statistically significant in the city. Biogenic production of several carbonyls, such as 2-butanone, was supported by their mid correlation with solar radiation and low correlation with propionaldehyde, which is mainly emitted by anthropogenic sources. The seasonal variability of the concentrations was observed in the first three samplings, with the highest levels reached in the fall. The rainy conditions during the fourth sampling did not allow comparison. Carbonyl–NOx–O3 analysis was made. Results indicated a carbonyl-sensitive atmosphere, especially during the midday samplings of 10:00 a. m. to 2:00 p.m. and 2:00 p.m. and 6:00 p.m. because of the intense solar radiation during these periods.

Implications:?Monitoring of carbonyls in Monterrey, Mexico, was performed to quantify the pollutant concentration in the city’s atmosphere. Although primary emission is significantly important, the secondary production of the pollutants, along with ozone production being carbonyl sensitive, indicates that air pollution controls must address the direct sources and the precursors of the pollutants to achieve air quality.  相似文献   

8.
Simultaneous steam distillation-extraction (SDE) of fortified rainbow trout tissue resulted in greater than 95% recovery of 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, 2,4-diisopropylphenol, 2,5-diisopropylphenol, 3,5-diisopropylphenol, carvacrol and thymol. Lower recoveries were obtained for 2,6-diisopropylphenol (81%), thiophenol (55%), and thiocresol (85%). Analysis of concentrated extracts by gas chromatography/mass spectrometry operated in the selected ion monitoring mode allowed quantitative detection of these compounds down to 0.5 ppb based on 20 g of initial sample.  相似文献   

9.
In terms of food safety, species of the Fusarium, Aspergillus and Penicillium genera are considered the most significant because they produce the great majority of known mycotoxins. Developing resistance against commonly used fungicides have become a critical problem in area such as agriculture, the storage and production of food and even in human medicines. The need for research and development of new alternative antifungal treatment based on natural antifungal substances is obvious. Here, the antifungal efficacy of 21 phenolic components of essential oils and plant substances were tested against these filamentous fungi with respect to their different molecular structures. Minimum inhibitory concentration values MIC50 and MIC100 were successfully estimated for 15 substances by means of probit analysis. Thymol and carvacrol were evaluated as the most effective. The MIC50 values for thymol ranged from 30 to 52 μg mL−1. The MIC100 values for thymol ranged from 76 to 255 μg mL−1, respectively. For carvacrol, the MIC50 values ranged from 37 to 76 μg mL−1, and the MIC100 ranged from 131 to 262 μg mL−1. The results also revealed differences in the efficacy of phenols depending on molecular structures and different inter-species sensitivity.  相似文献   

10.
Campylobacter jejuni is an important human food-borne pathogen that can contaminate meat and poultry during processing. Consequently, strategies are sought to reduce the carriage of C. jejuni in food animals before they arrive at the abattoir. Thymol is a natural product that reduces survivability of Campylobacter in vitro, but its rapid absorption from the proximal alimentary tract limits its bactericidal efficacy in vivo. Thymol-β-d-glucopyranoside is more resistant to absorption than free thymol, but its administration to chickens has not been reported. In the present studies, 1 mM thymol-β-d-glucopyranoside was shown to exhibit near equal anti-Campylobacter activity as 1 mM thymol when incubated anaerobically in avian crop or cecal contents in vitro, resulting in reductions of 1.10–2.32 log10 colony forming units mL?1 in C. jejuni concentrations after 24 h incubation. In a follow-up live animal study, oral administration of thymol-β-d-glucopyranoside, but not free thymol, significantly lowered (>10-fold) recovery of Campylobacter from the crop of market-aged broilers when compared to placebo-treated controls (n = 6 broilers/treatment). Neither thymol-β-d-glucopyranoside nor thymol affected recovery of Campylobacter from cecal contents of the treated broilers. These results indicate that rapid absorption or passage of free thymol from the crop precluded its anti-Campylobacter activity at this site and throughout the entire gastrointestinal tract. Conversely, lower recovery of Campylobacter from the crop of birds treated with thymol-β-d-glucopyranoside indicates this conjugate was retained and able to be hydrolyzed to biologically active free thymol at this site as intended, yet was not sufficiently protected to allow passage of efficacious amounts of the intact glycoside to the lower gut. Nevertheless, these results warrant further research to see if higher doses or encapsulation of thymol-β-d-glucopyranoside or similar glycosides may yield an efficacious additive to reduce carriage of Campylobacter as well as other pathogens throughout the avian gut.  相似文献   

11.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   


12.
为了深入认识石油烃的厌氧降解过程,利用分子生物学技术分析了大庆油田采油废水处理系统厌氧池和进水中的微生物群落特征。基于DGGE和克隆文库的分析结果均表明,厌氧生物膜中存在的古菌源自于采油废水。厌氧生物膜和采油废水中的古菌主要是产甲烷菌,包括嗜甲基的Methanomethylovorans thermophila和利用氢和甲酸的Methanolinea tarda。值得注意的是,氢营养型的M.tarda在厌氧生物膜中得到了富集。进水和厌氧生物膜中的细菌群落结构明显不同。进水中的主要细菌类群为Epsilonproteobacteria,而生物膜中的主要类群为Nitrospira和Deltaproteobacteria。在厌氧生物膜中发现许多与产甲烷古菌(尤其是氢营养型产甲烷菌)协同降解石油烃类物质的细菌相关克隆:其中一个克隆与Syntrophus具有较高的同源性,该类菌是产甲烷菌介导的厌氧烃降解微生物区系中的关键细菌;许多Deltaproteobacteria克隆属于group TA类群,该类群细菌主要参与芳香族化合物产甲烷菌介导的厌氧降解过程。这些结果表明,在大庆油田采油废水厌氧处理系统中已经建立起由产甲烷菌所介导的厌氧石油烃降解的微生物区系。  相似文献   

13.
The aim of this study was to investigate the bacterial communities on paclobutrazol [(2RS, 3RS)-1-(4-Chlorophenyl)-4, 4-dimethyl-2-(1H-1,2,4-triazol-1-yl) pentan-3-ol]–applied agricultural soils by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rDNA gene fragments. Three different agricultural soil samples were collected from paclobutrazol applied mango and waxapple orchards, peanut fields and untreated rice fields as a control for DGGE analysis. The DGGE pattern of PCR- generated 16S rDNA gene fragments indicated that the bacterial populations from four paclobutrazol–applied soils of peanut fields were closely related to each other and two paclobutrazol–applied soils of mango and waxapple orchards harbored closely related bacterial communities. But, paclobutrazol–free agricultural soils comprised relatively a different bacterial group. However, the bacterial populations of mango and waxapple orchard are completely different from the bacterial communities of peanut field. Further purification and sequence analysis of 40 DGGE bands followed by phylogenetic tree assay showed similar results that soil bacteria from paclobutrazol applied mango and waxapple orchard are phylogenetically related. Based on the phylogenetic analysis, the clone M-4 was clad 100 % (bootstrap value) with Mycobacterium sp. The Mycobacterium sp. has been proved to degrade the phenolic compounds such as phenol, 4-chlorphenol, 2,4-dichlorophenol and paclobutrazol molecule containing chlorobenzene ring.  相似文献   

14.

Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO4 2− ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m3·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  相似文献   

15.
Thirty four phytoterpenoids were evaluated for their nematicidal effect using the model nematode Caenorhabditis elegans. Nematicidal activities of the tested compounds at concentrations of 50 μg/mL showed wide variation in their effects ranging from no effect, weak, moderate and strong effects. Terpenoids exerting 50% or higher mortality at 50 μg/mL were further tested at five different concentrations to calculate the concentration that will kill 50% of the nematode population (LC50). Among the most effective terpenoids were carvacrol, thymol, nerolidol, α-terpinene, geraniol, citronellol, farnesol, limonene, pseudoionone and eugenol in a descending order. These compounds exhibited a dose-dependent effect. The results suggest that the selected monoterpenoids and essential oils with a high concentration of these compounds mayprovide potential natural nematicides and merit further study as botanical nematicides for the control of both plant and animal parasitic nematodes. In general, oxygenated terpenoids and phenolic terpenoids exhibited higher nematicidal activity than hydrocarbons terpenoids.  相似文献   

16.
Insect-growth regulators (IGRs) have been receiving foremost attention as potential means of selective insect control. Benzoyl phenyl urea (BPU) is a well-known IGR having chitin synthesis inhibitor activity. Mimics of BPU have been synthesized by suitable derivatization of a naturally occurring monoterpenoid, thymol (2-isopropyl-5-methyl phenol) to form a = series of substituted benzoyl thymyl thioureas (BTTUs) [IVa-f] and benzoyl thymyl ureas (BTUs) [Va-f]. The synthesized compounds have been characterized by 1H and 13C NMR, LC-MS and elemental analysis. These derivatives have been screened for their effect on total haemocyte count of Dysdercus koenigii. It has been observed that the introduction of substituted benzoyl thiourea and urea linkage into a thymol ring via an amino group results in higher activity than the parent compound thymol and a comparable pattern of results with the standard insect-growth regulators, Penfluron. Urea [Va-f] compounds exhibited greater effect on Total Haemocyte Count (THC) than thiourea [IVa-f]. Fluoro substitution enhanced the effect on THC more than chloro substituted compounds, while ortho-substitution resulted in a better effect than para-substitution. The results described in this paper are promising and provide new array of synthetic chemicals that may be utilized as insect growth regulators.  相似文献   

17.
Ho CH  Liu SM 《Chemosphere》2011,82(1):48-55
The effect of concentration of coplanar PCB on the dechlorinating microbial community and dechlorination were investigated in anoxic estuarine sediment collected from Er-Jen River and enriched with 10 and 50 mg L−1 of 3,4,4′,5-tetrachlorobiphenyl, 3,3′,4,4′,5-pentachlorobiphenyl, and 3,3′,4,4′,5,5′-hexachlorobipheny. Dechlorination rates were similar in the cultures enriched with 10 and 50 mg L−1 of 3,4,4′,5-tetrachlorobiphenyl, whereas significantly higher dechlorination rates were observed in cultures enriched with 10 mg L−1 of 3,3′,4,4′,5-pentachlorobiphenyl. No dechlorination was observed in sediment slurries enriched with 3,3′,4,4′,5,5′-hexachlorobipheny. Para dechlorination occurred prior to meta dechlorination during reductive dechlorination of 3,4,4′,5-tetrachlorobiphenyl and 3,3′,4,4′,5-pentachlorobiphenyl. GC-MS and denaturing gradient gel electrophoresis (DGGE) were used to detect dechlorination products and dechlorinating microorganisms in the enriched sediment cultures during the process of degradation. Two Chloroflexi phylotypes observed in DGGE were responsible for para and meta dechlorination respectively. Phylotype Cp-1 has 98% similarity to uncultured bacterium N5-12. Phylotype Cm-1 has 99% similarity to uncultured dechlorinating bacterium m1 or SF1 belonging to the ο-17/DF-1 group of PCB-dechlorinating bacteria.  相似文献   

18.
The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg?1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.  相似文献   

19.
This paper-describes the results of a study aimed at improving the efficiency of anaerobic digestion of a mixture of cattle dung, poultry waste and cheese whey at a ratio of 2 : 1 : 3 (w/w on dry weight basis) in terms of total gas production, methane content and process stability by adding various adsorbents. The adsorbents appeared to improve the digester performance, for example about a two-fold enhancement in total gas production with 17% enriched methane content were achieved with the addition of 4 g litre(-1) of silica gel.  相似文献   

20.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号