首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Depletion of plant-available soil phosphorus (P) from excessive to agronomically optimum levels is a measure being implemented in Ireland to reduce the risk of diffuse P transfer from land to water. Within the Nitrates and Water Framework Directive regulations the policy tool is designed to help achieve good status by 2015 in water bodies at risk from eutrophication. To guide expectation, this study used soil plot data from eight common soil associations to develop a model of Soil Test P (STP) (Morgan's extract) decline following periods of zero P amendment. This was used to predict the time required to move from excessive (Index 4) to the upper boundary of the optimum (Index 3) soil P concentration range. The relative P balance (P balance : Total soil P) best described an exponential decline (R2 = 63%) of STP according to a backwards step-wise regression of a range of soil parameters. Using annual field P balance scenarios (?30 kg P ha?1, ?15 kg P ha?1, ?7 kg P ha?1), average time to the optimum soil P boundary condition was estimated from a range of realistic Total P and STP starting points. For worst case scenarios of high Total P and STP starting points, average time to the boundary was estimated at 7–15 years depending on the field P balance. However, uncertainty analysis of the regression parameter showed that variation can be from 3 to >20 years. Combined with variation in how soil P source changes translate to resulting P delivery to water bodies, water policy regulators are advised to note this inherent uncertainty from P source to receptor with regard to expectations of Water Framework Directive water quality targets and deadlines.  相似文献   

2.
Close relationships among climatic factors and soil respiration (Rs) are commonly reported. However, variation in Rs across the landscape is compounded by site-specific differences that impede the development of spatially explicit models. Among factors that influence Rs, the effect of ecosystem age is poorly documented. We hypothesized that Rs increases with grassland age and tested this hypothesis in a chronosequence of tallgrass prairie reconstructions in central Iowa, U.S.A. We also assessed changes in root biomass, root ingrowth, aboveground net primary productivity (ANPP), and the strength of soil temperature and moisture in predicting Rs. We found a significant increase in total growing season Rs with prairie age (R2 = 0.79), ranging from 714 g C m?2 in the youngest reconstruction (age 4) to 939 g C m?2 in the oldest prairie (age 12). Soil temperature was a strong predictor of intra-seasonal Rs among prairies (R2 = 0.78–0.87) but mean growing season soil temperature and moisture did not relate to total Rs. The increase in Rs with age was positively correlated with root biomass (r = 0.80) and ANPP (r = 0.87) but not with root ingrowth. Our findings suggest that growing season Rs increases with tallgrass prairie age, root biomass, and ANPP during young grassland development.  相似文献   

3.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

4.
In West Africa policies for prescribed early fire and livestock grazing in the savanna woodlands are rarely based on long-term experimental studies. The inherently different management characteristics and their effects on the vegetation dynamics make landscape degradation a contentious issue. The effects of grazing intensity were investigated by a comparison of non-grazed areas, lightly grazed areas, moderately grazed areas, heavily grazed areas and very heavily grazed areas that received one of two fire treatments: early burning and fire protection in a long-term 12-year study. The parameters assessed reflected changes in herbaceous plant cover, biomass as well as soil physical and hydrological properties. The main findings were by and large specific for the grazing level. This supports the argument for devolution of management responsibility to the local level where there is indigenous site-specific knowledge but at the same time insufficient management capacity.A comparison of composite soil samples taken at a depth of 0–10 cm did not differentiate significantly between treatments. This is probably because the composite soil sampling procedure hid the properties of the top first few centimeters. Grazing pressure had a tendency to reduce total above ground biomass (p = 0.081). This was related to increased biomass removal and the trampling pressure (static load) exerted by the animals. The infiltration measurements indicated that the deleterious impact of cattle trampling increased as stocking rate increased. Livestock grazing significantly (p = 0.038) lowered the infiltrability. Prescribed early fire had a tendency (p = 0.073) to reduce the soil water infiltration rate. The subplots subjected to prescribed burning had a lower steady state infiltration rate compared to unburnt areas (means of 49.2 ± 27.5 mm h−1 versus 78 ± 70.5 mm h−1 for burnt and unburnt subplots, respectively). A partial least squares projection to latent structures showed that 34% of the steady state infiltrability was explained by the stocking rate and soil organic matter. Also all soil characteristics were significantly connected to steady state infiltrability suggesting that they are related to the soil hydrological response to trampling.From a management perspective, adoption of a short duration grazing system should avoid high stocking rates because they may adversely affect soil infiltrability, increase susceptibility to erosion in the savannas and decrease biomass productivity.  相似文献   

5.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

6.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

7.
An extensive knowledge of the temporal variability of soil fertility parameters and how this variation affects the environment is imperative to a wide range of disciplines within agricultural science for optimal crop production and ecosystem preservation. This paper examines the temporal variability of soil pH, organic matter (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), available phosphorus (PAv), and available potassium (KAv) on Cambosols (Entisols) (n = 179) and Anthrosols (Inceptisols) (n = 95) in Zhangjiagang County, China from 1980 to 2004. Nutrient input was monitored from 1983 to 2004. Annual N fertilizer rates were significantly different during three periods (1983–1989, 1989–1999, 1999–2004), where annual rates increased significantly after 1989 and then decreased after 1999. Annual P fertilizer rates were significantly different during two periods (1983–1993, 1993–2004) where annual rates increased after 1993. No change was found in K fertilizer rates. Soil pH marginally increased by 0.14 units in Cambosols, but significantly decreased by 1.02 units in Anthrosols. OM, CEC, and TN increased in both soil orders an average of 2.15 g kg?1, 1.6 cmol kg?1, and 0.21 g kg?1, respectively. TP decreased in Anthrosols by 70 mg kg?1, PAv increased in Cambosols by 4.83 mg kg?1, and KAv decreased in Cambosols by 15 mg kg?1. Fertilizer input rates are causing nutrient imbalances, contributing to acidification in Anthrosols, and decreasing C/N ratios. Nutrient loading of N and deficiency of K is also a potential problem in the area. Efforts should be made to readjust soil nutrient inputs to reach an optimal, sustainable level.  相似文献   

8.
Nutrient balances aggregated at the continental, national, or regional levels for African farming systems are usually reported as strongly negative. At the landscape or farm scale, the most commonly reported variability is the gradient of decreasing soil fertility from intensively managed “home” fields to more extensively managed “bush” fields. Case study evidence from an agro-pastoral community of southern Mali’s cotton zone showed that “home” and “bush” fields differed significantly in nutrient balances and soil fertility status but that inter-household differences related to household practice and social factors were even more important.Plot and household-level soil nutrient balances were calculated in 1996–1997 from participatory exercises such as resource flow mapping, participant observation, and soil sampling. The overall community-level nutrient balances averaged −9.2 kg N ha−1, +0.8 kg P ha−1, and −3.4 kg K ha−1, with significant inter-household variation. Soil analysis confirmed significant variation in soil nutrient status at both the landscape and plot levels. Comparing the scale and patterns of input use inequality using Gini coefficients showed the range of coefficients attributable to household behaviours matched or surpassed those attributable to distance factors alone. Input use intensity declined with increasing distance from nutrient sources but field level nutrient balances were better explained by household practice than by distance. Systemic differences in household asset ownership, use, and resource allocation behaviour suggested that much of the diversity seen in the nutrient balances and soil analyses was due to persistent inter-household inequality and the consequent exchanges of agro-pastoral resources. Inter-household negotiations for inputs (such as exchanges of manure and carts) and household-level decisions about input allocation created, exploited, and reinforced a mosaic of soil fertility “hotspots” surrounded by less fertile and less intensively managed patches.  相似文献   

9.
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha?1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P  0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha?1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.  相似文献   

10.
The application of NH4+-based fertilizers is a common practice in rice production. The immediate effect of a late season urea application on the processes involved in CH4 emission from a rice field was investigated on sandy loam located in the valley of River Po at Vercelli, northern Italy, and planted with rice (Oryza sativa, type japonica, variety Koral). Urea, applied at a rate of 50 kg N ha−1 on the 75th day after flooding, significantly stimulated both CH4 production and CH4 oxidation. During the following 9 days, the rates of CH4 production and CH4 oxidation in the 0–3 cm soil layer increased by 24–52 and 18–41%, respectively, of the fertilized plot compared to the unfertilized control plot. Methane oxidation on roots was also stimulated by urea, indicated by shorter lag times. Porewater concentrations of CH4 in the 0–6 cm soil layer increased with time and soil depth, but were not affected by fertilization with urea. Urea application also exhibited little impact on CH4 emission. During the 7 days following fertilization, urea only slightly reduced the CH4 flux. Ammonium originating from urea hydrolysis was completely depleted from the porewater within 3 days, mainly due to plant uptake. Fertilizer application did also not affect the contribution of CH4 oxidation to the net flux of CH4, determined by measuring δ13CH4 and by inhibition of CH4 oxidation. The absence of any effect of urea on net CH4 emission in this study was presumably caused by the rapid depletion of urea, the counterbalance between the increase of CH4 production and the increase of CH4 oxidation after fertilization, and methanogenesis in deeper soil layers.  相似文献   

11.
The feasibility of utilizing enzymatic hydrolysates of separator sludge, a palm oil mill effluent, and sago starch in the acetone–butanol–ethanol fermentation by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) was investigated. The sludge hydrolysate was used as a growth medium substitute, a fermentation substrate, and as a source of nitrogen and micronutrients. Butanol produced, 3.50 g l−1, was the same when the sludge hydrolysate was used as a second (refreshing) growth medium. As a substrate, initial nitrogen gas sparging shortened the lag phase which then enhanced butanol production. Fermentation without pH control enhanced butanol productivity whereas controlled fermentation at pH 5.5 and 5.8 progressively favored acid production while redox dyes, methyl and benzyl viologen, neutral red and methylene blue, had no effect on solvent production. As a source of nitrogen and micronutrients in sago starch hydrolysate, the final butanol concentration, 10.4 g l−1, was comparable to that in glucose and sago starch hydrolysate media supplemented with tryptone–yeast–acetate (TYA) medium components medium, although productivity was low. Cell growth, butanol and total solvent productivity in TYA-supplemented sago starch hydrolysate and glucose media were the same.  相似文献   

12.
Arsenic contamination is of great environmental concern due to its toxic effects as a carcinogen. Knowledge of arsenic background concentrations is important for land application of wastes and for making remediation decisions. The soil clean-up target level for arsenic in Florida (0.8 and 3.7 mg kg−1 for residential and commercial areas, respectively) lies within the range of both background and analytical quantification limits. The objective of this study was to compare arsenic distribution in urban and non-urban areas of Florida. Approximately 440 urban and 448 non-urban Florida soil samples were compared. For urban areas, soil samples were collected from three land-use classes (residential, commercial and public land) in two cities, Gainesville and Miami. For the non-urban areas, samples were collected from relatively undisturbed non-inhabited areas. Arsenic concentrations varied greatly in Gainesville, ranging from 0.21 to approximately 660 mg kg−1 with a geometric mean (GM) of 0.40 mg kg−1, which were lower than Miami samples (ranging from 0.32 to 112 mg kg−1; GM=2.81 mg kg−1). Arsenic background concentrations in urban soils were significantly greater and showed greater variation than those from relatively undisturbed non-urban soils (GM=0.27 mg kg−1) in general.  相似文献   

13.
For the removal of phosphate (PO43 -) from water, an adsorbent was prepared via carbonization of sewage sludge from a wastewater treatment plant: carbonized sludge adsorbent (CSA). The mechanism of phosphate removal was determined after studying the structure and chemical properties of the CSA and its influence on phosphate removal. The results demonstrate that phosphate adsorption by the CSA can be fitted with the pseudo second-order kinetics and Langmuir isotherm models, indicating that the adsorption is single molecular layer adsorption dominated by chemical reaction. The active sites binding phosphate on the surface are composed of mineral particles containing Si/Ca/Al/Fe. The mineral containing Ca, calcite, is the main factor responsible for phosphate removal. The phosphate removal mechanism is a complex process including crystallization via the interaction between Ca2 + and PO43 -; formation of precipitates of Ca2 +, Al3 +, and PO43 -; and adsorption of PO43 - on some recalcitrant oxides composed of Si/Al/Fe.  相似文献   

14.
Estimates of regional greenhouse gas emissions from agricultural systems are needed to evaluate possible mitigation strategies with respect to environmental effectiveness and economic feasibility. Therefore, in this study, we used the GIS-coupled economic-ecosystem model EFEM–DNDC to assess disaggregated regional greenhouse gas (GHG) emissions from typical livestock and crop production systems in the federal state of Baden-Württemberg, Southwest Germany. EFEM is an economic farm production model based on linear programming of typical agricultural production systems and simulates all relevant farm management processes and GHG emissions. DNDC is a process-oriented ecosystem model that describes the complete biogeochemical C and N cycle of agricultural soils, including all trace gases.Direct soil emissions were mainly related to N2O, whereas CH4 uptake had marginal influence (net soil C uptake or release was not considered). The simulated N2O emissions appeared to be highly correlated to N fertilizer application (R2 = 0.79). The emission factor for Baden-Württemberg was 0.97% of the applied N after excluding background emissions.Analysis of the production systems showed that total GHG emissions from crop based production systems were considerably lower (2.6–3.4 Mg CO2 eq ha−1) than from livestock based systems (5.2–5.3 Mg CO2 eq ha−1). Average production system GHG emissions for Baden-Württemberg were 4.5 Mg CO2 eq ha−1. Of the total 38% were derived from N2O (direct and indirect soil emissions, and manure storage), 40% were from CH4 (enteric fermentation and manure storage), and 22% were from CO2 (mainly fertilizer production, gasoline, heating, and additional feed). The stocking rate was highly correlated (R2 = 0.85) to the total production system GHG emissions and appears to be a useful indicator of regional emission levels.  相似文献   

15.
In many peri-urban areas of Southeast Asia, land use has been transformed from rice-based to more profitable vegetable-based systems in order to meet the increasing market demand. The major management related flows of nitrogen (N), phosphorus (P), potassium (K), copper (Cu) and zinc (Zn) were quantified over a 1-year period for intensive small-scale aquatic and terrestrial vegetable systems situated in two peri-urban areas of Hanoi City, Vietnam. The two areas have different sources of irrigation water; wastewater from Hanoi City and water from the Red River upstream of Hanoi. The first nutrient balances for this region and farming systems are presented. The main sources of individual elements were quantified and the nutrient use efficiency estimated. The environmental risks for losses and/or soil accumulation were also assessed and discussed in relation to long-term sustainability and health aspects.The primary source of nutrient input involved a combination of chemical fertilisers, manure (chicken) and irrigation water. A variable composition and availability of the latter two sources greatly influenced the relative magnitude of the final total loads for individual elements. Despite relatively good nutrient use efficiencies being demonstrated for N (46–86%) and K (66–94%), and to some extent also for P (19–46%), high inputs still resulted in substantial annual surpluses causing risks for losses to surface and ground waters. The surplus for N ranged from 85 to 882 kg ha−1 year−1, compared to P and K which were 109–196 and 20–306 kg ha−1 year−1, respectively. Those for Cu and Zn varied from 0.2 to 2.7 and from 0.6 to 7.7 kg ha−1 year−1, respectively, indicating high risk for soil accumulation and associated transfers through the food chain.Wastewater irrigation contributed to high inputs, and excess use of organic and chemical fertilisers represent a major threat to the soil and water environment. Management options that improve nutrient use efficiency represent an important objective that will help reduce annual surpluses. A sustainable reuse of wastewater for irrigation in peri-urban farming systems can contribute significantly to the nutrient supply (assuming low concentrations of potential toxic or hazardous substances in the water). Nutrient inputs need to be better related to the crop need, e.g. through better knowledge about the nutrient concentrations in the wastewater and improved management of the amount of irrigation water being applied.  相似文献   

16.
Adoption of glyphosate-resistant canola (Brassica napus L.) has increased glyphosate applications to this crop, and concerns have been raised about unintended consequences of these multiple applications. A field trial was conducted to evaluate the effects of pre-seed and in-crop glyphosate and alternative herbicides on soil microbial community functional structure, diversity and biomass. Pre-seed treatments were 2,4-D, glyphosate and 2,4-D + glyphosate, and in-crop treatments were glyphosate applied once, glyphosate applied twice, ethalfluralin, ethalfluralin + sethoxydim + ethametsulfuron + clopyralid, and sethoxydim + ethametsulfuron. Rhizosphere and bulk soil was collected at flowering stage of canola and analyzed for bacterial community-level substrate utilization patterns and microbial biomass C (MBC). Where differences were significant, pre-seed application of both 2,4-D and glyphosate altered the functional structure and reduced the functional diversity of soil bacteria, but increased MBC. These effects were not necessarily concurrent. The reduction in functional diversity was due to reduction in evenness, which means that the soil where both pre-seed herbicides had been applied was dominated by only few functional groups. In 1 year, two in-crop applications of glyphosate also reduced the functional diversity of soil bacteria when applied after pre-seed 2,4-D, as did in-crop sethoxydim + ethametsulfuron following pre-seed glyphosate. Even though significant differences between herbicides were fewer than non-significant differences, i.e., there were no changes in soil microbial community structure, diversity or biomass in response to glyphosate or alternative herbicides applied to glyphosate-resistant canola in most cases, the observed changes in soil microbial communities could affect soil food webs and biological processes.  相似文献   

17.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

18.
Soils developed on the sites of Australian Aboriginal oven mounds along the Murray River in SE Australia, classified as Cumulic Anthroposols under the Australian Soil Classification, are shown to have traits similar to the Terra Preta de Indio of the Amazon basin. Seven such sites were characterised and compared with adjacent soils. The Cumulic Anthroposols contained significantly (p < 0.05) more soil carbon (C), compared to adjacent non-Anthroposols. Solid-state 13C NMR spectroscopy showed that the C in the Cumulic Anthroposols was predominantly aromatic, especially at depth, confirming the presence of charcoal. Radiocarbon analysis carried out on charcoal collected from two of these sites showed that it was deposited 650 ± 30 years BP at one site and 1609 ± 34 years BP at the other site, demonstrating its recalcitrance in soil. The charcoal originated from plant material, as shown by SEM, and had high levels of Ca agglomeration on its surfaces. The Cumulic Anthroposols were shown to have altered nutrient status, with total N, P, K and Ca being significantly greater than in the adjacent soils throughout the profile. This was also reflected in the higher mean CEC of 31.2 cmol (+) kg?1 and higher pH by 1.3 units, compared to the adjacent soils. Based on the similarity of these Cumulic Anthroposols with the Terra Preta de Indio of the Amazon, we suggest that these Cumulic Anthroposols can be classified as Terra Preta Australis. The existence of these soils demonstrates that Australian soils, in temperate climates, are capable of storing C in much higher quantities than has been previously recognised, and that this capability is founded on the unique stability and properties of charred organic matter. Furthermore, the addition of charcoal appears to have improved the physical and chemical properties of these soils. Together, this provides important support for the concept of soil amendment with “biochar”, the charred residue produced by pyrolysis of biomass, as a means for sequestering C and enhancing agricultural productivity.  相似文献   

19.
Integration of fish stocking with rice (Oryza sativa L.) cultivation promises an ecologically sound and environmentally viable management of flooded ecosystem. Rice agriculture contributes to the emission of greenhouse gases CH4 and N2O, but little is known on the effect of fish rearing in fields planted to rice on the emission of these two greenhouse gases. In a field study, CH4 and N2O fluxes were measured from a sub-humid tropical rice field of Cuttack, eastern India, as affected by integrated rice–fish farming under rainfed lowland conditions. Three Indian major carps, Catla catla H., Labeo rohita H. and Cirrhinus mrigala H., and Puntius gonionotus B. were stocked in rice fields planted to two rice cultivars in a split-plot design with no fish and fish as the main treatments and two rice varieties as sub-treatments with three replicates each. Fish rearing increased CH4 emission from field plots planted to both the rice cultivars with 112% increase in CH4 emission in cv. Varshadhan and 74% in case of cv. Durga. On the contrary, fish stocking reduced N2O emission from field plots planted to both the rice varieties. Movement of fish and associated bioturbation coupled with higher dissolved organic-C and CH4 contents, and lower dissolved oxygen could be the reasons for release of larger quantities of CH4 from rice + fish plots, while higher dissolved oxygen content might have influenced release of more N2O from the rice alone treatment. The total greenhouse gas emission, expressed as CO2 equivalent global warming potential (GWP), was considerably higher from rice + fish plots with CH4 contributing a larger share (91%) as compared to rice alone plots (78–81%). On the contrary, N2O had a comparatively lesser contribution with 19–22% share in rice alone plots that was further reduced to 9% in rice + fish plots. However, considering the profit-loss analysis based on the market price of the produce, rice–fish system provided a net profit of $453.36 ha?1 over rice alone system in spite of higher carbon credit compliance of a rice–fish ecosystem due to larger cumulative GWP.  相似文献   

20.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号