首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of post-dispersal weed seed predation in upland wheat fields converted from paddy fields was quantified in Shizuoka Prefecture, central Japan. We investigated the temporal variability in seed predation of Italian ryegrass (Lolium multiflorum Lam.), a non-native winter annual weed in Japan, during summer after the seed shed in both the field interior areas and boundary strips, and estimated the total seed loss due to predation during the summer. Furthermore, the contribution of invertebrates and vertebrates to seed predation was estimated by using exclosures. The total seed loss due to predation during four months (from late June to late October) in the field interior areas and boundary strips was estimated to be 35–43% (the maximum proportion of seed predation per two weeks = 27%) and 42% (25%), respectively. The seed predators in the field interior areas were vertebrates (rodents or birds) and invertebrates (crickets and ground beetles). In contrast, seed predators in the boundary strips were mainly invertebrates (crickets and ground beetles). The results of this study suggest that predators make a substantial contribution in the depletion of post-dispersal seeds of Italian ryegrass in converted paddy fields.  相似文献   

2.
An analysis of droppings collected in winter on unused fields in SW Poland (fallow, stubble of root crop, vegetable and cereal) showed that the base of the reed bunting Emberiza schoeniclus diet were seeds of annual weed species: Chenopodium album (74.06% of all recorded seed species), Amaranthus retroflexus (16.05%), Setaria viridis (9.50%), Stellaria media (0.21%), Fumaria officinalis (0.01%). The share of dominant weed species in the diet of reed bunting wintering on particular types of fields varied markedly. In the droppings from fallows and cereal stubbles, C. album clearly dominated (respectively, 88.60 and 66.12%). The highest proportion of A. retroflexus and S. viridis was detected in the diet of birds staying on root crop stubbles (respectively, 45.56 and 23.90%). The most diverse food composition was found in the case of birds feeding on root crops and the least diverse on fallows.  相似文献   

3.
The colonization of foliage-dwelling spiders into insecticide-free “micro” apple orchards at two distances (10 and 50 m) from an adjacent source habitat of deciduous forest was quantified in southern Québec, Canada. Both colonization rate and composition of colonizing spider assemblages were affected by distance at this small spatial scale: the samples from the micro-orchards 10 m from the forest were intermediate in composition between the assemblages in the deciduous forest and those in the micro-orchards 50 m from the forest. Spider species found in micro-orchards were the same as those documented from collections from older, insecticide-free orchards although species evenness was higher in the older orchards indicating that species composition shifts over time within the habitat. Maintaining deciduous forest near to orchards will provide a source of annual colonists for spider populations within the orchard.  相似文献   

4.
In the past century, especially the past five decades, the grasslands of the West Songnen Plain, Northeast China, were rapidly converted into croplands and salinized wasteland, and experienced a fragmentation process that is still ongoing. Almost no information is available on the spatial-temporal changes of grasslands in this area. In this study, grassland cover change, agricultural reclamation and salinized wasteland expansion were investigated during the past five decades. Grassland fragmentation was studied based on four landscape metrics. The grassland cover change was detected from a time series of topographic maps from 1954, satellite images of Landsat TM in 1986, 1995, and 2000 using remote sensing and geographic information systems (GIS). In addition, the land use changes were analyzed using a transition matrix of land use types, while the driving forces were explored according to climatic changes and socioeconomic developments. The results indicated a significant decrease in grassland area. Of the 1 418 945 ha of native grassland in 1954, approximately 64% was removed by 2000, while the number of patches (NP) increased from 865 to 2035 and the mean patch size (MPS) decreased from 1640 ha to 252 ha. During the whole study period, the average annual decrease rate of grassland was 34 894 ha/year. Cropland and salinized wasteland were the two main land use types into which grassland converted. During the past decades, obvious climatic changes occurred, which supplied a favorable potential environment for agricultural development but damaged grassland productivity. On the other hand, population, GDP and livestock number increased significantly as grassland quality decreased. According to the results, the shrinkage and fragmentation of grasslands may well be explained by socioeconomic development and aided by changing climatic conditions.  相似文献   

5.
One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.  相似文献   

6.
Nitrous oxide (N2O) and ammonia (NH3) emissions from surface applied high (HN) and low (LN) nitrogen pig manures were measured under field conditions. Manures were band-spread to a winter wheat crop at three growth stages—mid-tillering, stem elongation and flag leaf emergence. The N2O flux rates were measured using the static chamber technique while NH3 volatilisation was assessed using a micrometeorological mass balance technique with passive flux samplers. The N2O emissions were episodic in nature with flux rates observed ranging from 2.8 to 31.5 g N2O–N ha?1 day?1 (P < 0.001). Higher N2O emissions generally occurred after rainfall events. Highest N2O losses were observed from the HN treatment with LN manure use decreasing emissions by 18% (P < 0.03). The NH3 volatilisation rates were highest within 1 h of manure application with 95% of emissions occurring within 24 h (P < 0.001). Cumulative N loss was highest at mid-tillering as low crop canopy cover and increased wind-speeds enhanced NH3 loss (P < 0.001). Highest emissions were measured from the HN manure (P < 0.03). Total ammoniacal N loss ranged from 6 to 11%. Crop N uptake and grain yield were unaffected by application timing or manure type. Therefore, the use of LN manures decreased gaseous emissions of N2O and NH3 without any adverse effects on crop performance.  相似文献   

7.
Land use strongly influences soil properties and unsuitable practices lead to degradation of soil and environmental quality. The aim of this study was to assess the impact of different land uses on some chemical properties of soils developed from Pliocene clays, within hilly environments of central and southern Italy. The areas investigated are located in Vicarello di Volterra (Pisa, Tuscany), S. Quirico d’Orcia (Siena, Tuscany) and Soveria Simeri (Catanzaro, Calabria). Within each area different land uses were compared, including a natural ecosystem (Mediterranean bush), a perennial grass or pasture and an intensive crop (wheat, as monoculture or in rotation). The soils were sampled at 0.0–0.1, 0.1–0.2 and 0.2–0.4 m depth and analysed for particle size, pH, bulk density, cation exchange capacity and exchangeable cations, total organic carbon (TOC) and humified carbon (HC) concentrations, organic carbon stock and total N. The stratification ratio of soil organic carbon was calculated to characterize soil organic carbon distribution with depth. At all sites, soil under Mediterranean bush contained the largest amounts of TOC (as both concentration and stock), HC, total N and exchangeable K, together with the highest cation exchange capacity and the lowest pH values. The decrease in soil OC stock with land use change from natural to agricultural ecosystem was 65–85% to 0.1 m depth, 55–82% to 0.2 m depth and 44–76% to 0.4 m depth, with the lowest decrements for perennial grass from S. Quirico and the highest decrement for continuous wheat from Soveria Simeri. Continuous wheat cropping, based on conventional tillage, proved to be the least sustainable land use. At Soveria Simeri, the organic carbon content under pasture was not significantly larger than under wheat cultivation, probably because of grazing mismanagement; however, organic carbon under pasture was more humified. At S. Quirico, the perennial grass resulted in a significant increase in soil organic carbon at the soil surface relative to the wheat cultivation, while at Vicarello no differences were observed between alfalfa/wheat rotation and perennial grass. Our results lead to the questioning of sustainability of intensive cereal farming and uncontrolled grazing in the considered environments, emphasizing the need for greater attention to conservative land managements.  相似文献   

8.
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha?1 yr?1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.  相似文献   

9.
The sugarcane (Sacharum officinarum) monocropping has had a great socio-economic and environmental impact in Brazil, and agroforestry (AFs) has been considered as an alternative to its sustainable production. However, there is a lack of field experiments results under such conditions. Therefore, yield measurement across transect in the tree–crop interface in on-farm conditions, as well as the use of simulation models, may allow the evaluation of biophysical interactions between trees and crops and system productivity. In this work, plant growth and yield in a sugarcane–eucalyptus (Eucalyptus grandis) on-farm interface were evaluated. The experimental site had a Chromic Ferralsol soil and it is located in a sub-tropical region of Brazil. Availability of solar radiation for the crop along the transect was estimated and its effect on sugarcane dry matter production was evaluated. Using such relations, two sugarcane–eucalyptus AFs cycles were simulated to estimate system productivity. The field results showed that the trees presented a higher growth in the AFs, while the crop growth and yield were inversely proportional to their distance from the trees. The eucalyptus wood volume increased from 0.15 to 0.29 m3 per tree from monocropping to AFs. The sugarcane dry matter decreased from 35.1 to 8.70 t ha−1 from the furthest to the closest position from tree along the transect. Simulations suggested that light was the main cause of the crop yield reduction, but the importance of competition for water and nutrients increased inversely according to tree distance. However, both simulated AFs provided land equivalent ratio (LER) similar to one (1). Field measurements and simulations indicate that agroforestry systems are a sound alternative for sugarcane cultivation in the studied region. Combination of on-farm studies and simulation models provided conditions to understand tree–crop interactions and to extrapolate field results so that the performance of a new system could be estimated.  相似文献   

10.
Ecological compensation areas have been widely promoted in agriculture in the last decade. Besides their positive effects on biological diversity they also bear a risk of sheltering potential pest species such as common voles (Microtus arvalis). To assess the influence of wildflower strips on the spatio-temporal behavior of voles and their impact on adjacent crop fields, a common vole population living in a wildflower strip was monitored from May to October 2000 and from March to September 2001. A new system for automatic radio tracking was used which allowed tracking at 1 min intervals and up to 1000 bearings per vole per day. Voles showed small home ranges with a median size of 125 m2 (minimum convex polygon) and 30 m2 (Kernel), respectively. Home ranges were stable with a median overlap of 90% for consecutive days, were almost exclusively within the wildflower strip and contained several core areas per range. A polyphasic activity pattern with a phase length of 1.7 h was found during summer with a trend towards diurnal activity. Overall wildflower strips were high-quality habitats for voles and sustained high population densities without increased risk of voles dispersing into adjacent fields.  相似文献   

11.
Earthworm and termite diversity were studied in 12 long-term agricultural field trials across the sub-humid to semi-arid tropical zones of Eastern and Western Africa. In each trial, treatments with high and low soil organic C were chosen to represent contrasts in long-term soil management effects, including tillage intensity, organic matter and nutrient management and crop rotations. For each trial, a fallow representing a relatively undisturbed reference was also sampled. Earthworm taxonomic richness decreased in the direction fallow > high-C soil > low-C soil and earthworm abundance was higher in fallow than under continuous crop production. Termite abundance was not significantly different between fallow and high and low-C treatments and termite taxonomic richness was higher in fallow soil than in the two cropping systems. We concluded that fewer species of earthworms and termites were favored under agricultural management that led to lower soil C. Results indicated that the soil disturbance induced by continuous crop production was more detrimental to earthworms than to termites, when compared to the fallow.  相似文献   

12.
This study evaluated the relationship between diversity and activity-density of carabid beetles and invertebrate weed seed predation in conventional, no-till, and organic management systems in the Midwest USA. Carabid beetles were sampled with pitfall traps and invertebrate seed predation rates of fall panicum and common lambsquarters were assayed with exclosure cages. Total carabid activity-density was over two times higher in the conventional systems compared to the no-till and organic management systems. In contrast, activity-densities of seed-predating carabid species were over three times higher in the no-till compared to the conventional and organic systems. Carabid diversity was higher in the no-till and organic systems compared to the conventional system, and a multivariate analysis showed that carabid community structure was distinct among the three systems. Predation of fall panicum and common lambsquarters seeds was often over two times higher in the no-till compared to the conventional and organic systems, and there was a strong correlation (r > 0.94) between seed removal rates and the total number of carabid seed predators captured in each system.  相似文献   

13.
Increasing dependence on off-farm inputs including, fertilizers, pesticides and energy for food and fiber production in the United States and elsewhere is of questionable sustainability resulting in environmental degradation and human health risks. The organic (no synthetic fertilizer or pesticide use), and low-input (reduced amount of synthetic fertilizer and pesticide use), farming systems are considered to be an alternative to conventional farming systems, to enhance agricultural sustainability and environmental quality. Soil N availability and leaching potential, crop yields and weeds are important factors related to agricultural sustainability and environmental quality, yet information on long-term farming system effects on these factors, especially in the organic and low-input farming systems is limited. Four farming systems: organic, low-input, conventional (synthetic fertilizer and pesticides applied at recommended rates) 4-year rotation (conv-4) and a conventional 2-year rotation (conv-2) were evaluated for soil mineral N, potentially mineralizable N (PMN), crop yields and weed biomass in irrigated processing tomatoes (Lycopersicon esculentum L.) and corn (Zea mays L.) from 1994 to 1998 in California’s Sacramento Valley. Soil mineral N levels during the cropping season varied by crop, farming system, and the amount and source of N fertilization. The organic and low-input systems showed 112 and 36% greater PMN pools than the conventional systems, respectively. However, N mineralization rates of the conventional systems were 100% greater than in the organic and 28% greater than in the low-input system. Average tomato fruit yield for the 5-year period (1994–1998) was 71.0 Mg ha−1 and average corn grain yield was 11.6 Mg ha−1 and both were not significantly different among farming systems. The organic system had a greater aboveground weed biomass at harvest compared to other systems. The lower potential risk of N leaching from lower N mineralization rates in the organic and low-input farming systems appear to improve agricultural sustainability and environmental quality while maintaining similar crop yields.  相似文献   

14.
Bird communities in flooded rice strips of different widths were surveyed in 71 fields around Lake Kasumigaura, on the Kanto Plain (central Japan). Strips categorized into four width classes (<50, 50–100, 100–300 and >300 m) and two locations (core >100 and <100 m from edges) were censused from May to July 1998, and mean species number and density of birds were compared. Both density and mean species differed significantly between classes, strips >300 m wide favoring bird diversity and number of marsh and grassland species. Breeding skylarks and fan-tailed warblers hardly occurred in fields adjacent to edges. Strips <50 m wide were not suitable feeding site of egret species (Ardeidae), but supported diurnal activity of black-crowned night herons and species requiring both rice fields and adjacent environment. As a consequence, bird conservation in rice field strips needs to consider both their width and location within the environment.  相似文献   

15.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

16.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

17.
The aim of this paper is to examine the environmental consequences of beef meat production in the EU, using a life cycle approach. Four beef production systems were studied – three from intensively reared dairy calves and one from suckler herds. According to the results of the analysis, the contributions from the production of 1 kg beef meat (slaughter weight) to global warming, acidification, eutrophication, land use and non-renewable energy use were lower for beef from dairy calves than from suckler herds (16.0–19.9 versus 27.3 kg CO2e, 101–173 versus 210 g SO2e, 622–1140 versus 1651 g NO3e, 16.5–22.7 versus 42.9 m2year, and 41.3–48.2 versus 59.2 MJ, respectively). The breakdown analysis helped identify the key areas in the “cradle to farm gate” beef production system where sustainable management strategies are needed to improve environmental performance. The study also included a sensitivity analysis to preliminarily estimate GHG emissions from beef production systems if land opportunity cost and land use change related to grazing and feed crop production for beef were taken into account. If so, the contribution from the production of 1 kg beef to global warming would increase by a factor of 3.1–3.9, based on a depreciation period of 20 years. This highlights the importance of taking into account the impacts of land use in assessing the environmental impacts of livestock production.  相似文献   

18.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

19.
The use of municipal wastewater in agriculture requires a careful monitoring of a range of hygiene parameters. Yearly hygienic impact assessments on soil and fruit were made between 2000 and 2006 in an olive (Olea europaea L.) grove established near a municipal wastewater treatment plant in Southern Italy (Ferrandina–Basilicata region, 40°29′ N, 16°28′ E). The experimental grove was managed in two plots. The first plot, non-tilled, was drip irrigated daily with reclaimed wastewater. The second plot was unirrigated (i.e. rainfed) and subject to conventional management for the region. Samples of wetted soil from different depths and of treated wastewater were analysed for Escherichia coli, enterococci, sulphite-reducing Clostridium spores and Salmonella spp. Fruits were collected both from the canopy and from nets spread on the ground and analysed for faecal contamination. The average annual quantity of wastewater distributed was 293 mm. E. coli concentration in the wastewater varied considerably, being frequently above the stringent Italian mandatory limit of 10 CFU 100 mL?1 and also the WHO limit of 1000 MPN 100 mL?1. Salmonella was never detected in the wastewater, the soil or on the fruit samples. Slight increases in the other bacteria were observed in the wastewater-irrigated soil during the irrigation season and especially in the top 10 cm. Soil resilience and bacterial mortality/inactivation probably explains the seasonal decrease of soil bacteria content over the 7 years of the study. Because of their high resistance to disinfection treatments and to environmental conditions, the spores of the sulphite-reducing bacterium Clostridium could be useful as an indicator of contamination in future guidelines that might be enacted for the use of wastewater in agriculture. No significant microbial contamination was recorded on fruit harvested directly from the canopy of the wastewater-irrigated trees. Contaminations on fruits sampled from the ground in the wastewater-irrigated plot were always low and usually similar to, or lower than those observed on drupes collected from the rainfed plot. In the rainfed plot, the recorded occasional contaminations were probably due to a number of factors, such as grazing of farm stock, presence of wild animals and surface water runoff from adjacent agricultural areas. This work confirms that, under suitable conditions, low-quality wastewater can be useful as an additional water resource for olive irrigation in water-scarce Mediterranean environments.  相似文献   

20.
Arable land soils generally have lower organic carbon (C) levels than soils under native vegetation; increasing the C stocks through improved management is suggested as an effective means to sequester CO2 from the atmosphere. China's arable lands, accounting for 13% of the world's total, play an important role in soil C sequestration, but their potential to enhance C sequestration has not yet been quantitatively assessed. The C sequestration by agricultural soils is affected by many environmental factors (such as climate and soil conditions), biological processes (crop C fixation, decomposition and transformation), and crop and soil management (e.g. tillage and manure application). Estimation of the C sequestration potential requires the quantification of the combined effects of these factors and processes. In this study, we used a coupled remote sensing- and process-based ecosystem model to estimate the potential for C sequestration in agricultural soils of China and evaluated the sustainability of soil C uptake under different soil management options. The results show that practicing no-tillage on 50% of the arable lands and returning 50% of the crop residue to soils would lead to an annual soil C sequestration of 32.5 Tg C, which accounts for about 4% of China's current annual C emission. Soil C sequestration with improved soil management is highly time-dependent; the effect lasted for only 20–80 years. Generally, practicing no-tillage causes higher rate and longer sustainability of soil C sequestration than only increasing crop residue into soils. The potential for soil C sequestration varied greatly among different regions due to the differences in climate, soil conditions and crop productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号