首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
In tropical mountainous regions of South East Asia, intensive cultivation of annual crops on steep slopes makes the area prone to erosion resulting in decreasing soil fertility. Sediment deposition in the valleys, however, can enhance soil fertility, depending on the quality of the sediments, and influence crop productivity. The aim of the study was to assess (i) the spatio-temporal variation in grain yield along two rice terrace cascades in the uplands of northern Viet Nam, (ii) possible linkage of sediment deposition with the observed variation in grain yield, and (iii) whether spatial variation in soil water or nitrogen availability influenced the obtained yields masking the effect of inherent soil fertility using carbon isotope (13C) discrimination and 15N natural abundance techniques. In order to evaluate the impact of seasonal conditions, fertilizer use and sediment quality on rice performance, 15N and 13C stable isotope compositions of rice leaves and grains taken after harvest were examined and combined with soil fertility information and rice performance using multivariate statistics. The observed grain yields for the non-fertilized fields, averaged over both cascades, accounted for 4.0 ± 1.4 Mg ha?1 and 6.6 ± 2.5 Mg ha?1 in the spring and summer crop, respectively, while for the fertilized fields, grain yields of 6.5 ± 2.1 Mg ha?1 and 6.9 ± 2.1 Mg ha?1 were obtained. In general, the spatial variation of rice grain yield was strongly and significantly linked to sediment induced soil fertility and textural changes, such as soil organic carbon (r 0.34/0.77 for Cascades 1 and 2, respectively) and sand fraction (r ?0.88/?0.34). However, the observed seasonal alteration in topsoil quality, due to sediment deposition over two cropping cycles, was not sufficient to fully account for spatial variability in rice productivity. Spatial variability in soil water availability, assessed through 13C discrimination, was mainly present in the spring crop and was linearly related to the distance from the irrigation channel, and overshadowed in Cascade 2 the expected yield trends based on sediment deposition. Although δ15N signatures in plants indicated sufficient N uptake, grain yields were not found to be always significantly influenced by fertilizer application. These results showed the importance of integrating sediment enrichment in paddy fields within soil fertility analysis. Furthermore, where the effect of inherent soil fertility on rice productivity is masked by soil water or nitrogen availability, the use of 13C and 15N stable isotopes and its integration with conventional techniques showed potential to enhance the understanding of the influence of erosion – sedimentation and nutrient fluxes on crop productivity, at toposequence level.  相似文献   

2.
An extensive knowledge of the temporal variability of soil fertility parameters and how this variation affects the environment is imperative to a wide range of disciplines within agricultural science for optimal crop production and ecosystem preservation. This paper examines the temporal variability of soil pH, organic matter (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), available phosphorus (PAv), and available potassium (KAv) on Cambosols (Entisols) (n = 179) and Anthrosols (Inceptisols) (n = 95) in Zhangjiagang County, China from 1980 to 2004. Nutrient input was monitored from 1983 to 2004. Annual N fertilizer rates were significantly different during three periods (1983–1989, 1989–1999, 1999–2004), where annual rates increased significantly after 1989 and then decreased after 1999. Annual P fertilizer rates were significantly different during two periods (1983–1993, 1993–2004) where annual rates increased after 1993. No change was found in K fertilizer rates. Soil pH marginally increased by 0.14 units in Cambosols, but significantly decreased by 1.02 units in Anthrosols. OM, CEC, and TN increased in both soil orders an average of 2.15 g kg?1, 1.6 cmol kg?1, and 0.21 g kg?1, respectively. TP decreased in Anthrosols by 70 mg kg?1, PAv increased in Cambosols by 4.83 mg kg?1, and KAv decreased in Cambosols by 15 mg kg?1. Fertilizer input rates are causing nutrient imbalances, contributing to acidification in Anthrosols, and decreasing C/N ratios. Nutrient loading of N and deficiency of K is also a potential problem in the area. Efforts should be made to readjust soil nutrient inputs to reach an optimal, sustainable level.  相似文献   

3.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

4.
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha?1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P  0.05) at the highest fertilizer nitrogen treatment (2.16 ± 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha?1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.  相似文献   

5.
Tillage practices affect the fate of fertilizer nitrogen (N) through influencing transformations of N, but few studies have examined N2O and NH3 emissions, and N leaching from different rice tillage systems. Thus the objective of this study was to assess N2O emission, NH3 volatilization and N leaching from direct seeded rice in conventional tillage (CT) and no-tillage (NT) production systems in the subtropical region of China during the 2008 and 2009 rice growing seasons. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the sub-plot treatment, and there were four treatments: NT + no fertilizer (NT0), CT + no fertilizer (CT0), NT + compound fertilizer (NTC) and CT + compound fertilizer (CTC), respectively. Results showed that N fertilization significantly increased (p < 0.01) N2O emissions, NH3 volatilization and N leaching from rice fields in both years. In general, there was no significant difference in N2O emissions and NH3 volatilization between NT0 and CT0 in both years, while NTC had significantly higher (p < 0.05) N2O emissions and NH3 volatilization compared to CTC. Over the two rice growing seasons, NTC showed 32% and 47% higher N2O emissions, and 29% and 52% higher NH3 losses than CTC. Higher (p < 0.05) N2O emissions from NTC than CTC were presumably due to higher soil organic C and greater denitrification. Total N and NO3? concentrations were higher (p < 0.05) in CTC than NTC, but larger volumes of percolation water in NTC than CTC resulted in no significant difference in leakage of total N and NO3?. Hence, application of N fertilizer in combination with NT appeared to be ineffective in reducing N losses from N fertilizer in paddy fields.  相似文献   

6.
This study discusses soil fertility under perennial cash crop farming (para rubber, Hevea brasiliensis; black pepper, Piper nigrum; oil palm, Elaeis guineensis) conducted by local farmers and an oil palm estate in an upland area of Sarawak, Malaysia, in comparison with the surrounding secondary forests. In the farmlands of the local farmers, rubber farming was conducted without fertilizer application, while 2–5 t ha?1 of NPK compounds were applied annually on pepper farms. Soils under rubber farming were acidic with poor nutrient contents, resembling soils in secondary forests. In pepper farms, soils were less acidic and showed high nutrient contents, especially with respect to available P and exchangeable Ca. This trend became stronger with increasing farming duration. Fertilizers applied around pepper vines appeared to migrate and spread across the fields. Bulk density and hardness of surface soils were higher in pepper farms than in secondary forests, indicating soil compaction due to field works. In the oil palm estate, annual fertilizer application rates were moderate at 0.4–0.8 t ha?1 of NPK compound fertilizers. However, the soil properties in the oil palm estate were similar to those of the small-scale pepper farms. Close to the bases of the palms where fertilizers usually are applied, the contents of exchangeable Ca and available P were high. Nutrient uptake by the dense root systems of the palms seemed to prevent excessive loss of nutrients through leaching. Loss of soil organic matter and deterioration of soil physical properties were brought about by terrace bench construction, but the soils seemed to recover to some extent over time. In conclusion, technologies such as intercropping and the appropriate allocation of different crops to specific locations as well as the proper selection and dosage of fertilizers should be developed and adopted to improve fertilizer efficiency and prevent water pollution due to fertilizer wash-off from farmlands.  相似文献   

7.
Adoption of glyphosate-resistant canola (Brassica napus L.) has increased glyphosate applications to this crop, and concerns have been raised about unintended consequences of these multiple applications. A field trial was conducted to evaluate the effects of pre-seed and in-crop glyphosate and alternative herbicides on soil microbial community functional structure, diversity and biomass. Pre-seed treatments were 2,4-D, glyphosate and 2,4-D + glyphosate, and in-crop treatments were glyphosate applied once, glyphosate applied twice, ethalfluralin, ethalfluralin + sethoxydim + ethametsulfuron + clopyralid, and sethoxydim + ethametsulfuron. Rhizosphere and bulk soil was collected at flowering stage of canola and analyzed for bacterial community-level substrate utilization patterns and microbial biomass C (MBC). Where differences were significant, pre-seed application of both 2,4-D and glyphosate altered the functional structure and reduced the functional diversity of soil bacteria, but increased MBC. These effects were not necessarily concurrent. The reduction in functional diversity was due to reduction in evenness, which means that the soil where both pre-seed herbicides had been applied was dominated by only few functional groups. In 1 year, two in-crop applications of glyphosate also reduced the functional diversity of soil bacteria when applied after pre-seed 2,4-D, as did in-crop sethoxydim + ethametsulfuron following pre-seed glyphosate. Even though significant differences between herbicides were fewer than non-significant differences, i.e., there were no changes in soil microbial community structure, diversity or biomass in response to glyphosate or alternative herbicides applied to glyphosate-resistant canola in most cases, the observed changes in soil microbial communities could affect soil food webs and biological processes.  相似文献   

8.
Nutrient balances aggregated at the continental, national, or regional levels for African farming systems are usually reported as strongly negative. At the landscape or farm scale, the most commonly reported variability is the gradient of decreasing soil fertility from intensively managed “home” fields to more extensively managed “bush” fields. Case study evidence from an agro-pastoral community of southern Mali’s cotton zone showed that “home” and “bush” fields differed significantly in nutrient balances and soil fertility status but that inter-household differences related to household practice and social factors were even more important.Plot and household-level soil nutrient balances were calculated in 1996–1997 from participatory exercises such as resource flow mapping, participant observation, and soil sampling. The overall community-level nutrient balances averaged −9.2 kg N ha−1, +0.8 kg P ha−1, and −3.4 kg K ha−1, with significant inter-household variation. Soil analysis confirmed significant variation in soil nutrient status at both the landscape and plot levels. Comparing the scale and patterns of input use inequality using Gini coefficients showed the range of coefficients attributable to household behaviours matched or surpassed those attributable to distance factors alone. Input use intensity declined with increasing distance from nutrient sources but field level nutrient balances were better explained by household practice than by distance. Systemic differences in household asset ownership, use, and resource allocation behaviour suggested that much of the diversity seen in the nutrient balances and soil analyses was due to persistent inter-household inequality and the consequent exchanges of agro-pastoral resources. Inter-household negotiations for inputs (such as exchanges of manure and carts) and household-level decisions about input allocation created, exploited, and reinforced a mosaic of soil fertility “hotspots” surrounded by less fertile and less intensively managed patches.  相似文献   

9.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

10.
Using the life cycle assessment (LCA) method, we analyzed the effects of different cropping systems (sole maize (CK), maize + soybean (CST) and maize + groundnut (CGT)) on the environment. The comprehensive index of environmental impacts varied in the order, sole maize > maize + groundnut > maize + soybean, with corresponding intercropping values of 0.1295, 0.1229 and 0.0945, respectively. The results showed that intercropping maize with suitable plants (e.g., groundnut and soybean) could reduce the adverse effects of over-application of nitrogen fertilizer on the environment. The study further showed that the LCA method may be a convenient and effective approach for analyzing the environmental impact of fertilizer management in agricultural fields.  相似文献   

11.
‘Formiguers’ are structures similar to charcoal-kilns that were used to burn piles of biomass with a soil cover in order to produce fertilizers for agricultural plots. Their use was widespread in Spain up to the 1960s and similar structures are still in use in India and Bhutan. Our objective was to study the effects of the ‘formiguer’ on its soil cover in terms of changes in nutrient availability. We built an experimental 0.5-m3 ‘formiguer’ with 68 kg of plant material with a 12% moisture content and 550 kg of soil with a 16% moisture content. The content of organic carbon and mineral nitrogen decreased in the soil cover as a result of burning. After aerobic incubation all samples had a similar content of mineral nitrogen. Exchangeable potassium and total and labile phosphorus increased after burning as a result of the soil cover mixing with the ashes of the biomass as the ‘formiguer’ collapsed during burning in the first two cases, while mineralization of organic compounds produced the increase in labile phosphorus. This input of nutrients for the agricultural plots occurs at a net loss of 0.4–2.5 Mg organic C ha?1. Very small amounts of charcoal were produced and this may be the reason for their low occurrence in soils today. Burning of ‘formiguers’ required the harvest of vegetation from a considerable forest area (10–25 ha per hectare of agricultural land) and represented a significant disturbance of these systems.  相似文献   

12.
The largest areas of acid sulphate (AS) soils in Europe are located in Finland, where 67,000–130,000 ha of AS soils are in agricultural use. In addition to their acidifying effects on waters, AS soils might be a significant source of greenhouse gases. In this pilot research, carbon and nitrogen content and microbial activity were studied in an AS and a non-AS soil. Large carbon and nitrogen stocks (110 Mg Corg ha?1 and 15 Mg Ntot ha?1) as well as high substrate induced respiration (33 μg CO2–C g?1h?1) were found in the C horizons of the AS soil but not in the non-AS soil. High microbial activity in these horizons of the AS soil was further confirmed by the measurement of dehydrogenase activity, basal respiration, the numbers of culturable bacterial cells, and the ratio of culturable to total numbers of cells. Still, the denitrifying enzyme activity was very low in the anaerobic horizons of the AS soil, indicating the prevalence of microbes other than denitrifiers. We suspect that the microbial community originated with the genesis of AS soil and has been supported by the large stocks of accumulated carbon and mineral nitrogen in the C horizons. If these permanently water-saturated subsoils are exposed to oxygen and their microbial activity consequently increases, large carbon and nitrogen stocks are likely to be mobilised, resulting in increased emission of greenhouse gases. Additional studies of boreal AS soils are needed to assess their potential contribution to increases in greenhouse gas fluxes at the local, regional, and global scales.  相似文献   

13.
In West Africa policies for prescribed early fire and livestock grazing in the savanna woodlands are rarely based on long-term experimental studies. The inherently different management characteristics and their effects on the vegetation dynamics make landscape degradation a contentious issue. The effects of grazing intensity were investigated by a comparison of non-grazed areas, lightly grazed areas, moderately grazed areas, heavily grazed areas and very heavily grazed areas that received one of two fire treatments: early burning and fire protection in a long-term 12-year study. The parameters assessed reflected changes in herbaceous plant cover, biomass as well as soil physical and hydrological properties. The main findings were by and large specific for the grazing level. This supports the argument for devolution of management responsibility to the local level where there is indigenous site-specific knowledge but at the same time insufficient management capacity.A comparison of composite soil samples taken at a depth of 0–10 cm did not differentiate significantly between treatments. This is probably because the composite soil sampling procedure hid the properties of the top first few centimeters. Grazing pressure had a tendency to reduce total above ground biomass (p = 0.081). This was related to increased biomass removal and the trampling pressure (static load) exerted by the animals. The infiltration measurements indicated that the deleterious impact of cattle trampling increased as stocking rate increased. Livestock grazing significantly (p = 0.038) lowered the infiltrability. Prescribed early fire had a tendency (p = 0.073) to reduce the soil water infiltration rate. The subplots subjected to prescribed burning had a lower steady state infiltration rate compared to unburnt areas (means of 49.2 ± 27.5 mm h−1 versus 78 ± 70.5 mm h−1 for burnt and unburnt subplots, respectively). A partial least squares projection to latent structures showed that 34% of the steady state infiltrability was explained by the stocking rate and soil organic matter. Also all soil characteristics were significantly connected to steady state infiltrability suggesting that they are related to the soil hydrological response to trampling.From a management perspective, adoption of a short duration grazing system should avoid high stocking rates because they may adversely affect soil infiltrability, increase susceptibility to erosion in the savannas and decrease biomass productivity.  相似文献   

14.
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha?1 yr?1. This was likely caused by the installation of a massive drainage system which led to the release of SOC from deep soil layers previously protected under poor drainage conditions. The annual crop rotation was another major force driving SOC variation and resulted in spatial variability of annual budgets in all croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of the entire state due mainly to a high level of baseline SOC stocks.  相似文献   

15.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

16.
Estimates of regional greenhouse gas emissions from agricultural systems are needed to evaluate possible mitigation strategies with respect to environmental effectiveness and economic feasibility. Therefore, in this study, we used the GIS-coupled economic-ecosystem model EFEM–DNDC to assess disaggregated regional greenhouse gas (GHG) emissions from typical livestock and crop production systems in the federal state of Baden-Württemberg, Southwest Germany. EFEM is an economic farm production model based on linear programming of typical agricultural production systems and simulates all relevant farm management processes and GHG emissions. DNDC is a process-oriented ecosystem model that describes the complete biogeochemical C and N cycle of agricultural soils, including all trace gases.Direct soil emissions were mainly related to N2O, whereas CH4 uptake had marginal influence (net soil C uptake or release was not considered). The simulated N2O emissions appeared to be highly correlated to N fertilizer application (R2 = 0.79). The emission factor for Baden-Württemberg was 0.97% of the applied N after excluding background emissions.Analysis of the production systems showed that total GHG emissions from crop based production systems were considerably lower (2.6–3.4 Mg CO2 eq ha−1) than from livestock based systems (5.2–5.3 Mg CO2 eq ha−1). Average production system GHG emissions for Baden-Württemberg were 4.5 Mg CO2 eq ha−1. Of the total 38% were derived from N2O (direct and indirect soil emissions, and manure storage), 40% were from CH4 (enteric fermentation and manure storage), and 22% were from CO2 (mainly fertilizer production, gasoline, heating, and additional feed). The stocking rate was highly correlated (R2 = 0.85) to the total production system GHG emissions and appears to be a useful indicator of regional emission levels.  相似文献   

17.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

18.
Depletion of plant-available soil phosphorus (P) from excessive to agronomically optimum levels is a measure being implemented in Ireland to reduce the risk of diffuse P transfer from land to water. Within the Nitrates and Water Framework Directive regulations the policy tool is designed to help achieve good status by 2015 in water bodies at risk from eutrophication. To guide expectation, this study used soil plot data from eight common soil associations to develop a model of Soil Test P (STP) (Morgan's extract) decline following periods of zero P amendment. This was used to predict the time required to move from excessive (Index 4) to the upper boundary of the optimum (Index 3) soil P concentration range. The relative P balance (P balance : Total soil P) best described an exponential decline (R2 = 63%) of STP according to a backwards step-wise regression of a range of soil parameters. Using annual field P balance scenarios (?30 kg P ha?1, ?15 kg P ha?1, ?7 kg P ha?1), average time to the optimum soil P boundary condition was estimated from a range of realistic Total P and STP starting points. For worst case scenarios of high Total P and STP starting points, average time to the boundary was estimated at 7–15 years depending on the field P balance. However, uncertainty analysis of the regression parameter showed that variation can be from 3 to >20 years. Combined with variation in how soil P source changes translate to resulting P delivery to water bodies, water policy regulators are advised to note this inherent uncertainty from P source to receptor with regard to expectations of Water Framework Directive water quality targets and deadlines.  相似文献   

19.
Reducing phosphorus (P) in dairy diets may result in different types of manure with different chemical composition. Application of these manures to soils may affect the soil P solubility and lead to different environmental consequences. A laboratory incubation study determined the impact of 40 dairy manures on P dynamics in two soil types, Mattapex silt loam (Aquic Hapludult) and Kalmia sandy loam (Typic Hapludult). The manures were fecal samples of lactating cows, collected from commercial dairy farms located in Northeastern and Mid-Atlantic United States, with a wide range of dietary P concentrations (from 2.9 to 5.8 g P kg−1 feed dry matter, DM). Dried and ground fecal samples were mixed with surface horizon (0–15 cm) of soils at 150 kg P ha−1 and the mixtures were incubated at 25 °C for 21 days. At the end of incubation, water soluble P (WS-P) and Mehlich-3 P (M3-P) in the soil–manure mixtures were substantially higher than the control (soil alone) but were lower than the soils receiving fertilizer KH2PO4 at 150 kg P ha−1. Similarly, the relative extractability of P in soils amended with low- and high-P manures was always lower (<93%) than KH2PO4 suggesting that fertilizer P is more effective at increasing soil solution P in the short-term. Concentrations of WS-P or M3-P in soil–manure mixtures did not differ regardless of the source of manure (i.e. different farms and different diets). This suggests that when the same amount of P is added to soils through manure applications, the solubility or bioavailability of P in soils will be the same. However, P concentrations in feces correlate significantly with that in diets (r = 0.82**); and when the manures were grouped into high-P diets (averaging 5.1 g P kg−1) versus low-P diets (3.6 g P kg−1), manure P was 40% greater in the high-P group (10.6 g kg−1 DM) than the low-P group (7.6 g kg−1 DM). Thus, lowering excess P in diets would reduce P excretion in manures, P accumulation in soils, improve P balance on farms, require less area for land disposal, and decrease potential for P loss to waters.  相似文献   

20.
Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secondary succession on ecosystem carbon cycling. The invasion of woody plant species was found to significantly change carbon balance shifting annual NEE from source to an evident sink. According to one year of data succession site stored ?126 ± 14 g C m?2 y?1 while grassland site emitted 353 ± 72 g C m?2 y?1. In addition, the seasonal course of CO2 exchange differed between both succession stages, which can be related to differences in phenology, i.e. activity of prevailing plant species, and modified environmental conditions within forest fragments of the invaded site. Negligible effect of instrument heating was observed which proves the Burba correction in our ecosystems unnecessary. Unexpectedly high CO2 emissions and large disagreement with soil respiration especially on the grassland site in late autumn indicate additional sources of carbon which cannot be biologically processes, such as degassing of soil pores and caves after rain events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号