共查询到16条相似文献,搜索用时 78 毫秒
1.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中. 相似文献
2.
采用PM2.5和人口格网数据,计算了2000~2016年中国PM2.5人口暴露风险值,并利用Theil-Sen Median趋势分析、标准偏差和Hurst指数等,分析了17a间中国PM2.5人口暴露风险的时空变化特征.结果表明:①17a间PM2.5人口暴露风险在胡焕庸线两侧差异巨大,东部高、西部低,东部多年风险均值为2.787,西部为0.065;②17a间PM2.5人口暴露风险在胡焕庸线两侧的变化幅度具有较显著差异,西部整体呈下降趋势,而在2011年和2015年有明显回升,东部自2001年迅速增加且保持平稳状态,直至2015年出现大幅度回落.③PM2.5人口暴露风险的稳定性与持续性差异显著,东部以不稳定与弱反持续性为主,西部则以稳定与强反持续性为主要特征.④暴露等级为危险与极危险水平下的人口总量与人口密度在空间上呈现出东部高西部低的分布状态. 相似文献
3.
PM2.5时空分异特征认知对大气污染联防联控意义重大,本文从空间多尺度的视角出发,利用空间模式分析方法与地理探测器,对2011~2017年中国大陆地区PM2.5年均浓度时空分布格局及成因进行探究,从而揭示PM2.5多尺度时空分异特征.结果表明:①2011~2017年PM2.5年均浓度相对稳定,无明显趋势,国家与区域尺度PM2.5变化特征基本一致,呈现"W"型变化,整体上看,污染程度由高到低依次为:中部、东部、西部与东北.②由空间模式分析结果可知,高值聚集区主要位于中国的东部、中部以及新疆的西南地区,低值聚集区则集中在青藏、云贵高原以及大兴安岭地区.③地理探测器分析结果证实:城市化因素中人口密度是国家与区域尺度上PM2.5时空分异的主导因素,同时,产业、能耗与交通因素对PM2.5分布格局存在不同程度影响.在区域尺度上,除了人口密度因素之外,工业用电量与公车总量对中部地区PM2.5年均浓度影响较大,东部地区是工业烟粉尘排放量与道路面积,东北地区则为第二产业产值占比与城市绿地率,社会经济因素对西部地区的PM2.5年均浓度影响不显著. 相似文献
4.
本研究利用PM2.5实测数据、MERRA-2 AOD与PM2.5再分析数据、气象因子和夜间灯光等数据,基于极限梯度提升、梯度提升、随机森林模型和Stacking模型融合技术提出了PM2.5浓度组合估算模型.在此基础上,从年、季、月尺度综合分析了2000~2019年中国PM2.5时空变化特征.结果表明:①组合模型实现了中国2000年以来PM2.5逐月浓度的可靠估算.②2000~2019年中国PM2.5年均浓度呈快速增加保持稳定显著下降的趋势,2007年和2014年分别为增加到稳定和稳定到下降的转折点.PM2.5月均浓度呈先降后升的"U"型趋势,最小值在7月,最大值在12月.③自然地理条件和人类活动奠定了中国PM2.5浓度年度空间格局变化的基础,气象条件的逐月变化决定了PM2.5浓度月度空间格局变化的主基调.④2000~2014年中国PM2.5浓度的标准差椭圆中心向东移动,2014~2018年椭圆中心向西移动.1~3月椭圆中心向西移动,4~9月椭圆中心先北移后南移,9~12月椭圆中心向东移动. 相似文献
5.
为探讨冬季珠江三角洲(下称珠三角)区域污染物的空间传输延迟性及其与气象、地理的关联性,利用2014年12月1日-2015年1月9日天气图、珠三角区域4个典型城市——韶关、广州、深圳、香港的地面气象数据及ρ(PM2.5),采用时间序列、相关性分析等方法,分析了2014年冬季各城市大气ρ(PM2.5)变化关联特征以及受天气过程的影响.结果表明:在研究时段内,受11次冷空气南下和3次西南暖湿气流控制的典型天气过程影响,4个典型城市的ρ(PM2.5)小时均值、日均值的时间序列变化趋势具有一致性,并且4个城市间的ρ(PM2.5)相关性均呈现深圳与香港>广州与深圳>韶关与广州的现象.在冷空气南下的典型天气过程中,4个城市ρ(PM2.5)小时均值存在显著相关,其中,韶关与广州的相关系数为0.84,广州与深圳的相关系数为0.80,深圳与香港的相关系数为0.92;4个城市间ρ(PM2.5)变化存在一定的滞后现象,其中,广州较韶关延迟4 h,深圳较广州延迟3 h,香港较深圳延迟1 h;而在西南暖湿气流控制的典型天气过程中,4个城市间ρ(PM2.5)变化的关联特征不明显.研究显示,冬季珠三角区域污染物在典型冷空气南下过程中存在较明显的空间传输延迟特征,并且各典型城市间浓度变化相关性较显著. 相似文献
6.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系. 相似文献
7.
自2013年我国首次开展全国范围PM2.5近地面监测以来,少有研究从全国空间尺度分析近3年全国PM2.5污染状况时空变化的总体特征,识别PM2.5污染加剧或缓解的空间范围,更缺乏直接对比评估国家大气污染重点防控区内外PM2.5污染特征变化的差异.基于2013—2015年PM2.5监测数据,综合运用时空统计分析与空间插值制图手段,揭示近3年ρ(PM2.5)及不同等级污染天数的时空变化格局,并着重对比分析“三区十群”区域内外ρ(PM2.5)的变化差异.结果表明,2013—2015年,全国持续监测的413个站点中有335个监测站点ρ(PM2.5)年均值下降,其中218个站点实现连续两年年均浓度降低,74个站点ρ(PM2.5)年均值降至符合国家二级标准;全国大部分地区ρ(PM2.5)年超标率由50%以上降至30%以下,重度污染站点占比由88.38%降至73.77%,严重污染站点占比由65.86%降至36.35%;长三角城市群、长株潭城市群、武汉及周边城市群、陕西关中城市群PM2.5污染呈现明显好转趋势;西藏、云贵高原以及海峡西岸城市群、珠三角城市群等沿海地区ρ(PM2.5)一直较低,空气质量相对优良;但与此同时,京津冀城市群、山东半岛城市群及河南中部和北部地区仍是中国PM2.5重污染区域,新疆西南部、合肥、南昌等地区逐渐形成新的PM2.5重污染格局. 相似文献
8.
基于PM2.5遥感数据和人口格网数据,利用污染物人口暴露风险模型、Theil-Sen Media和Mann-Kendall等方法,分析了2000~2016年全球PM2.5人口暴露风险时空分布特征,并识别出暴露高风险区域.结果表明,PM2.5遥感数据和人口格网数据可以客观地评价暴露风险程度.全球PM2.5平均浓度在各大洲差异显著,PM2.5污染的高值区域主要分布在东亚、南亚和东南亚.PM2.5质量浓度的多年平均值从高到低分别是亚洲14.7μg/m3、非洲8.1μg/m3、欧洲8.03μg/m3、南美洲5.69μg/m3、北美洲4.41μg/m3和大洋洲1.27μg/m3.2000~2016年,全球PM2.5人口暴露风险在宏观尺度上呈逐渐减少的趋势,而在区域内则呈现出差异性.空间上,全球PM2.5人口暴露风险各大洲从高到低依次为亚洲5.94、非洲0.62、欧洲0.45、南美洲0.32、北美洲0.27和大洋洲0.01.时间上,2000~2016年,亚洲和非洲PM2.5人口暴露风险呈增长趋势,欧洲和北美洲呈减少趋势,大洋洲和南美洲变化幅度较小. 相似文献
9.
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3 相似文献
10.
11.
近十余年来在中国的部分地区进行了PM2.5的采集和分析。以美国PM2.5的主要检测方法为例,指出在国际社会中针对PM2.5检测的重要性和普遍性,同时例举了中国PM2.5的检测方法的多样性。根据黑龙江省13个市(地)共57个环境空气自动监测站的大气监测数据结果,总结了黑龙江省PM2.5的监测现状,并详细的介绍了黑龙江省关于PM2.5检测工作的开展情况。以哈尔滨为例对市区的大气污染情况进行预测和分析;提出了黑龙江省大气PM2.5污染超标的原因,并提出切实可行的治理方案。同时指出了今后黑龙江省PM2.5监测的发展方向。 相似文献
12.
中国大陆城市PM_(2.5)污染时空分布规律 总被引:2,自引:0,他引:2
为分析中国大陆城市PM_(2.5)污染的时空分布规律,运用统计学方法和GIS技术对2014年开展PM_(2.5)常规监测的161个城市进行分析,结果发现:仅8.1%的城市年评价结果达标,日均质量浓度超标天数占26.6%.夏季及春末、秋初PM_(2.5)污染相对较轻,冬季污染较重.PM_(2.5)的日变化曲线呈现不太明显的双峰分布,最低值出现在16:00前后,最高值出现在10:00前后,而凌晨至清晨保持相对较高的污染水平.京津冀及周边地区,中部地区的湖北、湖南、安徽PM_(2.5)污染较重,东南沿海和云南、西藏污染相对较轻.PM_(2.5)的空间分布与风速、相对湿度、土地利用等因素的空间分布具有较强的相关性.PM_(2.5)与PM10质量浓度比值的平均值为0.591,空间上呈由西北向东南逐渐升高、南方高于北方的格局,时间上除1、2月份较高、5月份较低外,其余月份基本稳定在0.55~0.6.研究结果有利于从宏观上认识中国城市PM_(2.5)污染的时空格局,从而针对性地开展环境污染防控. 相似文献
13.
利用2015~2019年环境监测数据,对比分析华北地区平原城市保定市和山区城市张家口市PM2.5和O3变化和相关关系.结果表明:保定市PM2.5夏低冬高,O3夏高冬低,日变化为午后单峰型,而张家口市PM2.5浓度低,日变化幅度较弱,冬季O3日变化为午后峰值和凌晨5:00左右弱峰值双峰型.张家口市冬季全天及春夏秋季夜间O3浓度显著高于保定市,甚至夏季出现夜间O3超标异常,最高浓度达到202μg/m3,反映了平原城市和清洁山区大气物理化学过程变化的影响.PM2.5和O3在4~9月为正相关,11~3月为负相关;保定市PM2.5-O3相关系数日变化呈单峰型,张家口市为双峰型变化,凌晨和午后各有一峰值,华北地区平原污染区和高山相对清洁区,大气复合污染物PM2.5和O3作用关系的日变化及季节特征具有明显差异. 相似文献
14.
以全国城市空气质量实时发布平台的监测数据为基础,运用空间插值法模拟中国PM2.5在10kmx10km空间网格尺度上的暴露水平,利用BenMap工具估计2017年中国PM2.5污染的健康损失,在城市尺度上对PM2.5污染的健康经济损失进行空间分析.结果表明,在统计意义层面上,2017年PM2.5污染共计造成我国321435例早逝、746078例住院、14877551例患病,健康经济损失约为12625亿元,占当年全国GDP的1.53%.从城市尺度来看,健康效应呈现出一定的空间聚集效应,京津冀地区城市较为严重.在空间分布上,主要以“高-高”型和“低-低”型分布为主,即健康经济损失高值城市相互聚集、健康经济损失低值城市也相互聚集,并且存在高值城市之间相互影响并逐渐向四周扩散,进而影响周围低值城市的现象. 相似文献
15.
通过2013~2017年徐州市环境监测资料分析季风影响下主要大气复合污染物PM2.5和O3的相关性,并基于气象观测资料进一步探究PM2.5和O3相互作用机制的季节变化特征.结果表明:夏季风季节,PM2.5和O3呈正相关,相关系数高达0.56;冬季风季节,PM2.5和O3呈负相关,相关系数为-0.34,均通过了99%的置信检验,表明徐州市PM2.5和O3相互作用呈现相反的季节变化.夏季风季节,太阳辐射强,气温较高,大气氧化性较强,O3主导大气氧化性,大气氧化性通过促进二次颗粒物生成使得PM2.5浓度升高,夏季风季节以O3对PM2.5的促进作用主导城市大气复合污染变化;冬季风季节,太阳辐射弱,气温较低,大气氧化性较弱,高浓度的PM2.5削弱太阳辐射抑制大气光化学,导致O3生成率降低,冬季风季节以PM2.5对O3的抑制作用主导城市大气复合污染变化. 相似文献
16.
利用气溶胶-气候耦合模式BCC_AGCM2.0.1_CUACE/Aero,模拟了1850~1980和1980~2010年PM_(2.5)及其人为和自然气溶胶柱含量的时空变化,并分析了人为和自然气溶胶对这种变化的贡献.结果表明:1850~1980年,大部分陆地范围人为PM_(2.5)的柱含量有所增加,尤其是北美东部、欧洲和中国东部等地区,人为PM_(2.5)增加地更明显,且以夏季最为明显;自然PM_(2.5)的变化主要分布在几大沙漠地区,以春、夏季最为显著;人为气溶胶对总PM_(2.5)变化的贡献在秋季最大,达94%,夏、冬季次之,分别为46%和41%,春季最小,仅占28%.1980~2010年,人为PM_(2.5)在东亚、东南亚等地区均有所增加,春夏季较为显著,在欧洲中部和北美东部有所减少,且以夏季减少最为明显;自然PM_(2.5)在沙漠地带有显著的变化,以春季最为明显;人为PM_(2.5)的变化对总变化的贡献相比之前有所减少,四季均小于50%. 相似文献