首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 562 毫秒
1.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

2.
SBR工艺污水生物脱氮过程中N2O的释放特征   总被引:2,自引:2,他引:0       下载免费PDF全文
N2O是一种可以导致严重全球变暖的主要温室气体,污水的生物除氮处理过程被认为是N2O释放的重要来源。探究了缺氧-好氧(A/O)模式下SBR系统中N2O的释放特征和主要来源。结果表明:N2O的释放主要发生在SBR系统的好氧阶段,其最大释放速率达到2.02μg/(min·g),累积释放量为8.2 mg,好氧运行120 min时,测得NO2--N的累积浓度达到了最高值7.5 mg/L,NO2--N的积累和N2O的释放呈正相关性。细菌群落分析发现,A/O-SBR系统好氧阶段的一些优势菌被鉴定为黄杆菌(Flavobacteria),它们中的部分种群具有好氧反硝化的作用,然而NO2--N累积会抑制该类细菌的亚硝酸还原酶(Nos)活性,进而使N2O进一步还原为N2的途径受阻而释放N2O。因此,在污...  相似文献   

3.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

4.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

5.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

6.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5125-5132
反硝化除磷与厌氧氨氧化耦合可进一步降低脱氮除磷所需的碳源,而稳定获取NO2--N是两工艺独立、联合运行的关键.因此,以低C/N生活污水为研究对象,接种絮状污泥及少量长期贮存的好氧颗粒污泥,采用两段梯度曝气,并控制停曝时间(3min:3min),即以高频间歇梯度曝气模式,经60d的富集培养,将其诱导成具有短程硝化反硝化除磷功能的颗粒污泥,并分析了此过程中系统脱氮除磷性能变化.结果表明,稳定时期内,颗粒污泥平均粒径达841μm,SVI为31.23ml/g,颗粒结构致密,沉降性能良好.出水NO3--N小于0.1mg/L,TP<0.7mg/L,NO2--N>15mg/L,实现了P的高效去除和NO3--N的积累,并可为后续耦合Anammox提供稳定NO2--N基质.批次实验结果表明,颗粒中可利用NO2--N为电子受体的DPAOs占达57.63%,其富集提高了系统除磷能力.高频梯度间歇曝气可实现AOB与DPAOs的高度耦合,但仅以间歇曝气难以实现NOB的抑制,后通过在"氨谷点"前段,加入梯度曝气优化实际限氧曝气点,可强化对NOB的抑制,从而实现良好的亚硝酸盐积累.  相似文献   

7.
为明确温度对一体式厌氧氨氧化工艺的影响,本研究通过降温实现了一体式厌氧氨氧化工艺22℃下的常温运行,探究了微生物活性和群落结构随温度的变化.反应器采用自配进水、间歇曝气方式运行,进水NH4+-N浓度约254mgN/L,试验过程出水NO2--N浓度稳定在在10mg/L以下,但NO3--N随着降温有升高的趋势;总氮容积负荷在1.0~1.2g/(L·d)之间,总氮去除负荷在0.7~0.9g/(L·d);总氮去除率在62%~88%.反应器颗粒污泥中AOB活性始终最高,NOB活性远低于AOB和AnAOB;温度降低NOB活性增加;AnAOB到22℃时活性明显下降,因此需特别关注该温度下反应器的运行工况.Ca.Brocadia是反应器内丰度最高的AnAOB,相对丰度为2.7%~15.1%;Nitrosomonas是反应器内丰度最高的AOB,相对丰度为2.8%~11.5%.研究发现降温使AnAOB的优势属从Ca.Jettenia变为Ca.Brocadia;即后者较前者在低温条件下更具优势.  相似文献   

8.
为了明确曝气灌溉下土壤N2O排放特征及主要影响因子,实验设置了2个灌水量(70%和90%田间持水量)和2个增氧水平(5,40mg/L),采用静态箱法和qPCR技术对土壤N2O通量及土壤关键功能基因进行测定,研究不同灌水量和增氧水平对土壤充水孔隙度、溶解氧、氧化还原电位(Eh)、矿质氮及氨氧化古菌(AOA)、氨氧化细菌(AOB)和反硝化基因(narG和nosZ)的影响.结果表明:培养过程中,各处理N2O排放通量均呈现先增加后降低的趋势,于灌溉后1d达到峰值;曝气量和灌水量的增加可显著增加土壤N2O的排放通量和排放峰值.灌溉造成土壤含水量增加的同时,降低了土壤溶解氧和Eh;曝气可提高土壤溶解氧和Eh,改善土壤通气性(P<0.05),而对土壤充水孔隙度无显著影响.土壤充水孔隙度、Eh、NO3--N含量是曝气灌溉下驱动土壤N2O排放的主要理化因子.曝气显著增加了AOA的基因拷贝数,且N2O排放与AOA的基因拷贝数呈显著正相关关系(P<0.05).研究结果为进一步明确曝气灌溉对土壤N2O排放的影响机制和曝气灌溉模式下农田N2O排放管理提供支撑.  相似文献   

9.
采用UASB反应器在改变NO2--N/NH4+-N比条件下,考察厌氧氨氧化系统对NH4+-N的超量去除特征、相关酶的催化活性以及污泥菌群结构.结果表明,随着进水NO2--N浓度降低,反应器对NH4+-N的去除量相比理论较大,在停供NO2--N情况下,反应器内NH4+-N去除可达55 mg/L.反应器内NH4+-N的去除并不是是来自进水中SO42-和Fe3+/EDTA络合物,而是存在NH4+-N的好氧硝化.过氧化氢酶测定联合分子生物学技术分析显示,好氧硝化的所需氧量分别来自进水和过氧化氢酶产氧.反应器底部污泥层的氨氧化菌(AOB)、厌氧氨氧化菌(AnAOB)活性优于上部污泥层,相反,上部污泥层的异养反硝化菌(HDB)活性优于底部污泥层,二者协同将NH4+-N转化为N2.  相似文献   

10.
为实现常温下高氨氮废水中氮的高效去除,选取8:1、12:1和15:1等3个气水比(GWR)条件,考察常温下曝气生物滤池(BAF)短程硝化-厌氧氨氧化(ANAMMOX)一体化自养脱氮工艺稳定运行的性能.研究结果表明:进水氨氮(NH4+-N)浓度为400mg/L、回流比为1:1的条件下,GWR为15:1脱氮效果最好,氨氮去除率(ARE)达90%以上,总氮(TN)去除负荷为1.1kgN/(m3·d),去除率达83%.GWR为15:1时,溶解氧(DO)为2.41~4.22mg/L,进水NH4+-N转化为亚硝(NO2--N)量增加,ANAMMOX活性增强.对生物膜进行功能菌种实时荧光定量PCR(qPCR)分析得出,GWR为15:1时,ANAMMOX和氨氧化菌(AOB)两者丰度均最高,高达1012 copies/g dry sludge以上,一体化脱氮效果最好.同时,研究表明提高GWR后ANAMMOX反应增强,而过程中无N2O生成,GWR为15:1时,N2O总释放量最小,释放因子为0.0012.  相似文献   

11.
为探究同步硝化内源反硝化除磷(SNEDPR)强化移动床生物膜反应器(MBBR)工艺脱氮除磷的可行性,采用连续曝气和搅拌/曝气交替运行的MBBR反应器,以磁性填料作为载体处理模拟生活污水,考察了SNEDPR启动过程中的脱氮除磷性能,并结合荧光显微镜和高通量测序技术对各个功能菌群结构变化情况进行了分析.结果表明,经两阶段运行后,氨氮和磷去除率分别达到97.6%和85.37%,出水NO2-—N、NO3-—N和COD浓度分别为1.3949,3.88和20.4mg/L,同步硝化内源反硝化率(SNEDR)由0.07%逐渐升高至86.35%.好氧阶段同步硝化内源反硝化率的提高,使出水NOx-—N浓度下降,提高了系统的脱氮性能和厌氧阶段内碳源的储存量.荧光显微镜和高通量测序结果表明,经过53d的运行,微生物群落多样性呈显著提高,系统内GAOs、AOB、NOB丰度的提高(分别由接种污泥中的3.3%、0.84%和0.66%提高至系统内的27.08%/20.48%、1.45%/1.76%和1.05%/0.85%)和PAOs、DPAOs的存在,保证了系统的脱氮除磷性能,在MBBR工艺中实现了EBPR与SNED的耦合.  相似文献   

12.
为进一步充分利用原水中碳源,实现生活污水与富含硝酸盐的工业废水同步脱氮,采用2个SBR和1个UASB串联,处理低C/N生活污水和硝酸盐废水,分别启动内源反硝化反应器(ED-SBR)、半短程硝化反应器(PN-SBR)和厌氧氨氧化反应器(AMX-UASB),考察各反应器处理性能,并探讨生活污水与硝酸盐废水同步脱氮的可行性....  相似文献   

13.
构建了一种以CO2为唯一碳源的膜曝气氢基质生物膜反应器(H2-MBfR)对模拟地下水中2种主要的氧化型无机无污染物(NO3--N和ClO4-)进行生物还原去除.通过膜曝气方式使CO2起到提供碳源和调节反硝化过程中pH值跃升的双重作用,克服了传统方法所带来的二次污染和运行成本增加的问题.通过调整H2和CO2压力能够实现对反应器出水pH值的较为稳定的控制,当CO2压力分别为0.05MPa和0.08MPa 2个阶段时,在平均NO3--N和ClO4-进水浓度分别为20.73mg/L和10.57mg/L条件下,两阶段出水平均pH值分别为8.45和8.06,NO3--N和ClO4-去除率均大于95%;当第3阶段CO2压力提升至0.12MPa时,平均出水pH值下降至6.93,此时NO3--N和ClO4-去除通量明显降低.而提供过量的CO2会导致在偏酸性条件下甲烷化过程的产生,从而会导致其对H2的负面消耗进而使目标污染物的还原速率下降.因此,合理控制CO2压力使反应体系pH值维持在中性偏碱性条件下有利于NO3--N和ClO4-还原过程的高效进行.  相似文献   

14.
针对含NO3--N与较高浓度SO42-实际工业废水处理较难的问题,考察了不同水力停留时间(HRT)下连续运行的CO2-氢基质膜生物膜反应器(CO2-MBfR)处理模拟废水和实际工业废水的性能,结果表明,2种废水的出水NO3--N浓度均随着HRT的减小而增大,模拟废水中NO3--N的处理效果和电子通量分配比例均优于实际废水,但其电子通量分配的格局基本不变:NO3--N和SO42-的电子通量分别在90.09%~97.49%和2.51%~9.91%左右.要实现实际废水总氮达到15mg/L的排放标准,需维持HRT不少于10.4h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号