首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New technologies are in urgent need of unconventional hydrocarbon exploration and development in China.This paper provides a brief introduction and analysis of a new three-dimensional(3D)geomechanical restoration method developed in recent years.After an in-depth discussion on the technical principle and specific characteristics of the fields,we designed a feasible workflow for two oil-gas fields with great unconventional oil-gas resource potentials in China(Weiyuan and Jiulongshan oil-gas fields of Sichuan).After discussing the major challenges and limitations of the new technology,we also suggest its research efforts and future application prospect It is shown that the new technology will be an effective method to facilitate the exploration and development of unconventional oil and gas resources in China.  相似文献   

2.
油气产业集群识别为完善区域油气产业发展规划和明确不同区域油气产业集群发育程度差异提供科学依据。本文油气产业集群识别包括产业集群地理边界确定和产业集群辨认,选择行政区划省(直辖市或自治区)作为油气产业集群识别的地理边界;基于企业数量区位熵、产业产值区位熵和就业区位熵提出复合区位熵概念CLQ,并据此将我国12个油气资源富集省区依油气产业集群发育程度辨认(识别)为三个梯队:第一梯队包括新疆、黑龙江、辽宁、天津、山东、甘肃6省区,油气产业上、下游均不同程度地发育产业集群;第二梯队包括陕西、吉林、河北、四川、青海5省区,油气产业上、下游并非均发育产业集群;第三梯队为河南,油气产业上、下游均不发育产业集群;进一步计算12省区油气产业上、下游的CLQ差值,结果表明,总体上我国这12个油气资源富集省区油气产业下游相对于上游发育不足,油气产业链出现"上游大,下游小"的畸形格局。  相似文献   

3.
上海海域海洋资源丰富,对于现今频发的溢油事故,开展相应的生态环境风险区划研究,对事故周边生态敏感资源采取及时有效防护,特别是饮用水源地的保护是尤为迫切和重要的。结合上海海域生态敏感资源分布情况和溢油特征信息,利用灰色模糊综合评价法,对海域生态敏感区敏感系数进行模糊评判,综合分析历年溢油事故及船舶流量统计资料,基于GIS平台对事故高发区污染源周边生态敏感区进行风险等级划分,以大比例尺上海海域溢油生态环境风险区划图直观反应溢油影响范围、高风险区和生态敏感资源保护顺序等信息,为事发后海域应急响应工作提供简便快捷的基础性分析依据。  相似文献   

4.
The present study explores how oil and gas companies use Facebook to communicate about community-supporting initiatives and engage stakeholders. Drawing from the company–cause fit and social interactivity literature, we examined the type of message and the language used in company Facebook posts to elicit stakeholder engagement, as measured by the number of likes, shares, and comments. We content analyzed 953 Facebook posts from 12 companies featured on Oil & Gas Journal’s top 50-company list. The results showed that, although oil and gas companies are posting about their CSR-related efforts on Facebook, their lack of two-way messaging and interactive language use are not effectively engaging stakeholders. In terms of theory, this study advances company–cause fit and interactive studies by applying them to the oil and gas industry. In terms of practice, the results highlight the importance of using diverse messaging and interactive language when utilizing Facebook to engage stakeholders.  相似文献   

5.
Renewable and alternative fuels have numerous advantages compared with fossil fuels, as they are renewable and biodegradable, and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues. In this context, present work was carried out to investigate the feasibility of alternative and renewable fuels derived from biomass feedstock of different origin for engine applications. The present study was also extended to study the effect of producer gas composition derived from different biomass feedstock on the performance, combustion and emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated on a dual-fuel mode using Honge oil methyl ester (HOME) and producer gas induction. The performance of the engine was evaluated with a constant injection timing of 27° before top dead centre, an injection pressure of 205 bar for the diesel–producer gas combination and 230 bar for the HOME–producer gas combination and a compression ratio of 17.5. The results showed that the performance of the dual-fuel engine varies with the composition of the producer gas and depends on the type of biomass feedstock used in the gasifier. Experimental investigations on the dual-fuel engine showed that brake thermal efficiency values for the engine operated using HOME–producer gas derived from babul, neem and honge woods were found to be 17.2, 14.3 and 11.56% respectively, compared to 23.8% for diesel–producer gas operation at 80% load. However, the results showed better engine performance with lower exhaust emission levels for the operation of HOME–producer gas derived from the ordinary or babul wood compared with the operation of that derived from the neem and Honge woods. In view of this, present study reveals that use of alternative and renewable fuels for dual fuel engine can be considered as an immediate solution for the development of rural areas and emergency use in the event of severe diesel fuel shortage.  相似文献   

6.
Contrary to claims from American politicians, lobbyists, and oil and gas executives, allowing energy development in the Alaskan Arctic National Wildlife Refuge (ANWR) will harm the environment, compromise international law, erode the social significance of wilderness protection, and ultimately fail to␣increase the energy security of the United States. After exploring a brief history of the ANWR controversy, this piece argues that the operation of oil and gas refineries in ANWR will release discharged solids, drilling waste, and dirty diesel fuel into the ecosystem’s food-chain, as they have from oil operations in Prudhoe Bay. Less obvious but equally important, oil and gas exploration in ANWR will violate a number of international treaties on biodiversity protection. In the end, development in ANWR will threaten the concept of wilderness protection, and will do little to end US dependence on foreign sources of energy. About the Author: Benjamin K. Sovacool is a doctoral candidate in the Department of Science and Technology Studies at the Virginia Polytechnic Institute & State University in Blacksburg, Virginia. He works as a research analyst for the Consortium on Energy Restructuring and is a Senior Research Fellow for the Virginia Center for Coal and Energy Research. He also just completed a Graduate Fellowship in Energy Policy at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

7.
Karanja oil methyl ester (KOME), a biodiesel prepared from Karanja oil, a potential source of non-edible oil in India and a prospective alternative to the diesel fuel, shows comparable performance and considerable reduction in emissions except NOx. Exhaust gas recirculation (EGR) is a popular method of reducing the NOx emission. The aim of this experimental work was to study the potential of the cooled EGR in a direct injection compression ignition engine operating with the KOME and its blend. The study was conducted with the different EGR rates. Performance and emission parameters were compared by using diesel, KOME and its blend employing EGR and with the same fuels without EGR. The study also differentiates the effect of EGR on KOME and its blend with the neat diesel. The effect of EGR was found to be slightly higher for KOME biodiesel and its blend than for neat diesel. Increased NOx emission using KOME biodiesel was also found to be reduced by using EGR.  相似文献   

8.
Data from 1,122 brine injection wells, 24,515 dry holes, 20,877 plugged oil/gas wells, and 256 water wells were mapped with a geographic information system (GIS) and statistically analyzed. There were 9, 107, and 58 water wells within 750 m of a brine injection well, dry hole, or plugged oil/gas well, respectively. Computed median concentrations were 157 mg/l for chloride, 0.8 mg/l for bromide, and 169 microg/l for barium. The maximum chloride concentration was 2,384 mg/l, close to 10 times the secondary drinking water standard. Shallow water wells and water wells near plugged oil/gas wells had significantly higher chloride and bromide levels.  相似文献   

9.
ABSTRACT

Renewable and sustainable fuels for diesel engine applications provide energy protection, overseas exchange saving and address atmospheric and socio-economic concerns. This study presents the investigational work carried out on a single cylinder, four-stroke, direct injection diesel engine operated in dual fuel (DF) mode using renewable and sustainable fuels. In the first phase, a Y-shaped mixing chamber or venture was developed with varied angle facility for gas entry at 30°, 45° and 60°, respectively, to enable homogeneous air and gas mixing. Further effect of different gas and air mixture entry on the DF engine performance was studied. In the next phase of the work, hydrogen flow rate influence on the combustion and emission characteristics of a compression ignition (CI) engine operated in DF mode using diesel, neem oil methyl ester (NeOME) and producer gas has been investigated. During experimentation, hydrogen was mixed in different proportions varied from 3 to 12 l/min (lpm) in step of 3 lpm along with air-producer gas and the mixtures were directly inducted into engine cylinder during suction stroke. Experimental investigation showed that 45° Y-shaped mixing chamber resulted in improved performance with acceptable emission levels. Further, it is observed that investigation showed that at maximum operating conditions and hydrogen flow rate of 9 lpm, Diesel–producer gas and NeOME–producer gas combination showed increased thermal efficiency by 13.2% and 3.8%, respectively, compared to the DF operation without hydrogen addition. Further, it is noticed that hydrogen-enriched producer gas lowers the power derating by 5–10% and increases nitric oxide (NOx) emissions. However, increased hydrogen addition beyond the 12 lpm leads to sever knocking.

Abbreviations: NeOME: Neem oil methyl ester; BTE: brake thermal efficiency; CI: compression ignition; ITE: indicated thermal efficiency; PG: producer gas; CA: crank angle; K: Kelvin; BP: brake power; IP: indicated power; H2: hydrogen; HC: unburnt hydrocarbon; CO: carbon dioxide; CO2: carbon dioxide; NOx: nitric oxide; HRR: heat release rate; %: percentage; PPM: parts per million; CMFIS: conventional mechanical fuel injection system.  相似文献   

10.
Alternative fuels for diesel engine applications are gaining more prominence as they have numerous advantages compared to fossil fuels. They are renewable, biodegradable; provide food and energy security and foreign exchange savings. They address environmental concerns and socio-economic issues as well. Gaseous fuels such as compressed natural gas and hydrogenated compressed natural gas (HCNG) appear more attractive fuels for diesel engine applications operated in dual-fuel mode. Such dual fuel engines can replace considerable amount of liquid-injected pilot fuels by gaseous fuels besides being friendly to the environment. A small quantity of liquid fuel injected towards the end of the compression stroke initiates combustion of the inducted gas in the dual-fuel engines. The main advantage of dual-fuel engines is their lower nitrogen oxides (NOx) and particulate emissions. Hence renewable fuels such as biodiesels and gaseous fuels can be used predominantly for transportation and power generation applications. Gaseous fuels are clean burning and are more economical as well. A suitable carburettor was designed to supply a stoichiometric mixture of air and HCNG to the modified diesel engine operated in dual-fuel mode. The biodiesel used in this study is derived from Honge oil called the Honge oil methyl ester (HOME). This paper presents the performance, combustion and exhaust emission characteristics of a single cylinder, four stroke, direct injection, stationary diesel engine operated on HOME and HCNG in dual-fuel mode. From the results it is observed that HOME–HCNG combination gave lower brake thermal efficiency (BTE) and improved emission levels when compared with diesel/HOME in single fuel operation. Lower smoke and particulate matter were obtained with dual-fuel operation. Comparative measures of BTE, peak pressure, pressure–crank angle variation, smoke opacity, hydrocarbon, carbon monoxide and NOx emissions have been made and analysed.  相似文献   

11.
Biomass fuels have attracted an increase in interest due to the alarming rise in global greenhouse gases and the rapid rise of petroleum prices. Energy security on a sustainable basis can come only with the responsible use of home-sourced resources and not from imported fossil fuels such as coal or crude petroleum products. Partial combustion of biomass in the downdraft gasifier generates producer gas that can be used as the sole fuel or as a supplementary fuel for internal combustion engines. A dual fuel mode of operation, in which producer gas is used as a supplementary inducted fuel along with injected pilot fuels of Honge or Jatropha biodiesels, can be a promising alternative to diesel only usage. Two different carburettors were designed and fabricated to facilitate gas entry at 45° and 90° to the engine cylinder. The engine was experimentally optimised using Honge or Jatropha biodiesels–producer gas combinations with respect to maximum pilot fuel savings in the dual fuel mode operation, optimum air and gas mixing with different tested carburettors. The performance, combustion and emission characteristics of these dual fuel combinations were compared at different load conditions. The results showed that biodiesels of Honge or Jatropha oils–Producer gas combinations with carburettor of 90° gas entry resulted in better performance.  相似文献   

12.
Understanding resource-based communities (RBCs) as potential casualties of Canada's economic proclivity towards resource extraction projects may help us to generate political support for these communities at both local and national scales. The media has a critical role to play in promoting the development of this type of political discourse. This study examines how traditional print media coverage affects Canadians' perceptions of the Athabasca oil sands. A quantitative media analysis examines scope and thematic content of articles appearing in major Canadian newspapers between 2003 and 2013. We find that most coverage concerning the Athabasca oil sands over this period appears predominantly in western Canadian newspapers, with coverage primarily focusing on specific events. We argue that this geographic disparity in coverage does not provide Canadians with the adequate coverage necessary to develop an informed opinion on what the implications of ongoing oil sands development are at both a local and a national scale.  相似文献   

13.
ABSTRACT

Drawing from the Critical Discourse Analysis and Cultural Sociology of Space frameworks, this empirical analysis explores the discursive struggle between stakeholders of divergent viewpoints as they respond to the newfound spatial proximity of oil and gas extraction to homes and schools in suburban residential areas on Colorado's northern Front Range. Through an analysis of media, policy-making, and neighborhood meeting discourse, this study examines the social construction of space through policy narratives and regional debates about the American West's relationship to extractive industries. Results reveal that the discursive struggle over suburban drilling hinges upon the question of whether industrial activities belong in residential areas and is carried out through competing policy narratives that invoke differing (spatial versus aspatial) policy solutions. The deliberative quality of these policy narratives is constrained by existing spatial policy practices and further constrains democratic engagement.  相似文献   

14.
During recent decades, considerable effort has been expended world-wide to reduce dependency on petroleum fuels for power generation and transportation through the search for suitable alternative fuels that are environmentally friendly. In this respect, vegetable oils are a promising alternative to diesel fuel. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming and piston ring sticking and thickening of lubrication from long-term use in diesel engines. These problems can be eliminated or minimised by transesterification of the vegetable oils to form monoesters. Although transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than those of petroleum diesel fuel. The performance of a diesel engine with such biodiesel operation can be improved further with the concept of the low heat rejection (LHR) engine. In the LHR engine, combustion surfaces on the pistons, cylinder walls and valves can be coated with ceramic materials. The objective of this study was to apply the LHR engine concept for improving engine performance when either honge biodiesel, known as honge oil methyl ester (HOME), or neem biodiesel, known as neem oil methyl ester (NOME) oils was used as an alternative fuel. For this purpose, experiments were conducted on a single cylinder, four-stroke, direct injection, water-cooled compression ignition engine using diesel, HOME and NOME oils at different injection timings of 19, 23 and 27° before top dead centre (BTDC) with and without the induction of exhaust gas recirculation (EGR). The percentage of EGR was varied from 5 to 20% in steps of 5%. The results showed that specific fuel consumption and brake thermal efficiency were improved for both of the biodiesel fuels in the LHR engine. An EGR of 10% resulted in better performance with trade-off between oxides of nitrogen and hydrocarbons/carbon monoxide emissions and hence 10% EGR is taken as the best of the range from 5 to 20%. However, readings with other EGR ratios are not reported.  相似文献   

15.
This work investigated the optimisation of biodiesel production from waste cooking oil (WCO) and palm oil using a two-step transesterification process for WCO and base catalysed transesterification for palm oil. Transesterification reactions were carried out to investigate the effects of prepared catalyst CaO, methanol/WCO and methanol/palm oil ratio and temperature on the yield of biodiesel. A series of experiments were conducted to determine the best conditions for biodiesel production, using methanol/oil ratio between 4:1 and 11:1 and contact time varying between 2 and 4 h. Biodiesel yield of around 90 and 70% was obtained for palm and waste cooking oil at the methanol/oil ratios of 6:1 and 8:1 at temperature of 60 °C for reaction time of 4 h using prepared CaO as catalyst. The physicochemical properties of palm and WCO biodiesel were carried out using standard methods, while the fatty acid profile was determined using gas chromatography. The investigation concludes that biodiesel obtained from palm and waste cooking oil was within the specified limit.  相似文献   

16.
Stringent environmental policies and the ever increasing demand for energy have triggered interest in novel combustion technologies that use alternative fuels as energy sources. Of these, pilot-ignited compressed natural gas (CNG) engines that employ small biodiesel pilot to ignite a premixed natural gas–air mixture have received considerable attention. This paper discusses the effect of mixing chamber venturi, injection timing, compression ratio and exhaust gas recirculation (EGR) on the performance of dual-fuel engine operated on biodiesel derived from honge oil and is called honge oil methyl ester (HOME) and CNG. The proposed study mainly focuses on the manifold induction of CNG along with HOME injection. However, CNG can also be injected using port or direct gas injector (Lakshmanan and Nagarajan 2010, Energy 35, pp. 3172–3178). The future study will involve these methods of CNG injection. From this study, it is concluded that an advanced injection timing and an increased compression ratio resulted in increased brake thermal efficiency and reduced smoke, hydrocarbons and carbon monoxide emissions. However, nitrogen oxides (NO x ) emission increased significantly. The increased NO x emission was effectively reduced with EGR method. A mixing chamber venturi of 3 mm size, injection timing of 27° before top dead centre (BTDC), compression ratio of 17.5 and 10% EGR were found to be optimum for the modified compression ignition engine that was operated on CNG–HOME dual-fuel mode.  相似文献   

17.
Renewable and alternative fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues (Yaliwal et al. 2013. International Journal of Sustainable Engineering, doi:10.1080/19397038.2013.801530. Zhu et al. 2011a, Applied Thermal Engineering 31 (14–15): 2271–2278; Zhu et al. 2011b, Fuel 90: 1743-1750; Banapurmath, Tewari, and Hosmath 2008, Renewable Energy 33: 2007-2018; Banapurmath 2009, “Performance, Combustion and Emission Characteristics of a Single Cylinder Direct Injection CI Engine Operated on Dual Fuel Mode Using Honge Oil and Producer Gas.” PhD thesis, 1–195; Banapurmath et al. 2011, Waste and Biomass Valorization 2: 1–11). In this context, the main objective of the present work is to study methods of biofuel production such as Honge oil methyl ester (HOME) using a conventional transesterification process and bioethanol from the Calliandra calothyrsus shrub using a new pretreatment method known as hydrothermal explosion. Further, experimental investigations were carried out on a single-cylinder, four-stroke, direct-injection stationary diesel engine operating in a dual-fuel mode using HOME, bioethanol and producer gas combinations to determine its performance, combustion and emission characteristics. The performance of the dual-fuel engine was analyzed at optimized engine conditions. HOME-Bioethanol (BE) blends such as HOME+ 5% bioethanol (BE5), HOME+ 10% bioethanol (BE10) and HOME+ 15% bioethanol (BE15) were prepared by adding bioethanol to HOME (on volume basis) in different proportions ranging from 5 to 15% with an increment of 5%. In this present work, the effect of different BE blends on the performance of producer gas fuelled dual fuel engine was studied. Experimental investigation on dual fuel engine using BE5-Producer gas operation resulted in up to 4–9% increased brake thermal efficiency with decreased hydrocarbon (HC), carbon monoxide (CO) and marginally increased nitric oxide (NOx) emission levels compared to HOME-Producer gas, BE10-producer gas and BE15-producer gas mode of operation. However, it was observed that, the overall performance of BE-producer gas operation was found to be lower compared to diesel-producer gas operation.  相似文献   

18.
ABSTRACT

Analysis of plastic oil obtained from waste plastic through pyrolysis process, as an alternative to biodiesel is presented in this paper. The HCCI engine is considered for experimental validation of combustion performance and emission characteristics. To accumulate pyrolysis oil as fuel, the design modifications were made in external mixture formation on the existing computerised 4-stroke, single cylinder, water cooled, direct injection kirloskar diesel engine connected with eddy current dynamometer to satisfy HCCI conditions. HCCI engine can be worked on wide assortment of fuels beginning from diesel to different blends (WPPO 5%,10%,15% and 20% by volume) of biodiesel .The designed additional device connected to the engine is utilised for fuel vaporisation and mixture arrangement. In the experimental study, the combustion results were initiate to be of 39.69 % higher Rate of Heat Release (RoHR) for biodiesel HCCI as compared with diesel HCCI. Higher brake thermal efficiency (BTE) was found 37 % without exhaust gas recirculation (EGR) at WPPO 20 % biodiesel blend. And also found 50 % and 65 % reduction in NOx emission and 18 % and 28 % reduction in smoke opacity are obtained for biodiesel vapour induction without EGR and biodiesel vapour induction with 15 % EGR as compared with diesel fuel. The CO (0.34 %), and UHC (2.15 %) emissions are increases with 15 % EGR, but the emissions are within the standard limits specified by the emissions standards.  相似文献   

19.
ABSTRACT

China’s domestic oil production has lagged the growth in domestic oil consumption since the beginning of the 21st century, leading to a growing reliance on imports. In response, the Chinese government has introduced a number of policies, including import license constraints, to support domestic suppliers. In an effort to measure the economic impact of these policies we develop a short-run equilibrium model of China’s wholesale oil and gas market at the provincial scale. We construct counterfactual scenarios that suggest that relaxing policies that prioritize domestic production in 2016, when the average price of Chinese oil imports was US$42 per barrel (bbl), could have increased China’s import demand by 0.29 million barrels per day (MMbbl/d). This results in a substitution of 9% of China’s domestic production in 2016, and a reduction of US $2.8 billion in crude supply costs including transportation as the imported oil has more direct access to the country’s pipeline network, compared to the displaced domestic production. In addition, rising import prices since mid-2017 may provide a window of opportunity for Chinese policymakers to proceed with further deregulation of the domestic oil sector, as the short-term impact on domestic producers is reduced.  相似文献   

20.
The development of horizontal hydraulic fracture drilling or “fracking” has allowed for the extraction of deep, unconventional shale gas deposits in various shale seams throughout the USA. One such shale seam, the Marcellus shale, extends through New York State, Pennsylvania, and West Virginia, where shale gas development has rapidly increased within the last decade. This has created a boom of economic activity surrounding the energy industry. However, this bounty comes with risks to environmental and public health and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding “fracking” the oil and gas industry has had to undertake a myriad of public relations initiatives to legitimize their extraction efforts in the Marcellus shale region, and to frame the shale gas boom in a positive light to stakeholders. This article investigates one such public relations initiative, the Energy in Depth (EID) Northeast Marcellus Initiative. Through qualitative content analysis of EID's online web material, this article examines the ways in which the industry presents and frames natural gas development to the general public. Through appeals to patriotism, the use of environmental imagery, and a claimed commitment to scientific reason, the oil and gas industry uses EID to frame the shale gas extraction process in a positive light, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号