首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Palmerton Zinc Site is a Superfund site in Palmerton, Pennsylvania. Its former mineral processing operations have contaminated nearby wells and soils with zinc and cadmium. Preliminary analysis of soil and dust sampling conducted in May 1991 has revealed that the dust poses a potential threat to human health. Based on the results of a previous study, which showed a high percentage of silt and clay in soils from Palmerton residential properties, it was concluded that soil washing is not likely to be a viable method to treat the soil and dust contamination in Palmerton. However, since the completion of this study, a soil-washing process for “unwashable” clays and silts has been developed. A residential soil sample from Palmerton, which had low concentrations of arsenic, cadmium, and lead, and a somewhat high concentration of zinc, was washed in a bench-scale version of this process. The results showed that the new soil-washing process for “unwashable” clays and silts may be a viable method to treat the soil and dust contamination in Palmerton, depending on the soil quality criteria concentrations selected for site cleanup.  相似文献   

3.
Biofiltration of contaminants at concentrations below a certain level (sub‐low concentrations) is not as effective as at higher concentrations, which leads to incomplete removal of the contaminants, because of diffusive mass transfer of the contaminants inside the biofilm and insufficient carbon and energy sources to sustain biomass growth and maintenance. To overcome the limitation of diffusion, this article proposes the concept of convective flow biofilm in which contaminated air flows through the porous biofilm and thus carries the carbon and energy sources to the biomass. The innovative concept of convective flow biofilm was implemented in a convective flow biofilter (CFB), which was built from activated carbon‐coated ceramic monoliths by selectively blocking the channel openings. The CFB was tested for 11 weeks for the biofiltration of toluene at inlet concentrations below 100 ppmv. The CFB performed consistently better than the conventional diffusive flow biofilter (DFB), as indicated by the higher removal efficiencies and the higher CO2 productions. The CFB demonstrated up to 30 percent higher removal efficiency and an up to 100 percent higher elimination capacity than the DFB. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
8.
1,4‐Dioxane remediation is challenging due to its physiochemical properties and low target treatment levels. As such, applications of traditional remediation technologies have proven ineffective. There are a number of promising remediation technologies that could potentially be scaled for successful application to groundwater restoration. Sustainable remediation is an important consideration in the evaluation of remediation technologies. It is critically important to consider sustainability when new technologies are being applied or new contaminants are being treated with traditional technologies. There are a number of social, economic, and environmental drivers that should be considered when implementing 1,4‐dioxane treatment technologies. This includes evaluating sustainability externalities by considering the cradle‐to‐grave impacts of the chemicals, energy, processes, transportation, and materials used in groundwater treatment. It is not possible to rate technologies as more or less sustainable because each application is context specific. However, by including sustainability thinking into technology evaluations and implementation plans, decisions makers can be more informed and the results of remediation are likely to be more effective and beneficial. There are a number sustainable remediation frameworks, guidance documents, footprint assessment tools, life cycle assessment tools, and best management practices that can be utilized for these purposes. This paper includes an overview describing the importance of sustainability in technology selection, identifies sustainability impacts related to technologies that can be used to treat 1,4‐dioxane, provides an approximating approach to assess sustainability impacts, and summarizes potential sustainability impacts related to promising treatment technologies. ©2016 Wiley Periodicals, Inc.  相似文献   

9.
A number of different techniques were employed to locate the target dredge grade on a large‐scale Canadian sediment remediation project. These techniques included various coring events, Seabed Terminal Impact Newton Gradiometer (STING) testing, and geotechnical borings. Despite these techniques, the data set for interpolation of the dredge grade was widely spaced, and some of the investigations were not specifically intended to be used for defining the dredge grade. In order to reduce the risk of extra expenses from contractor claims resulting from differing sediment conditions, more precise planning was required. Due to the size of the area and the desired accuracy, subbottom profiling was identified as a potential tool to provide high‐density coverage across the site. As with any geophysical tool, ground truth data were required to verify and aid in interpretation. This article describes how subbottom profiling was used to refine the dredge grade for the target layer, the associated challenges related to signal loss in some areas, and how they were overcome. ©2017 Wiley Periodicals, Inc.  相似文献   

10.
11.
12.
Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece.  相似文献   

13.
Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
Commodore Solution Technologies, Inc. has developed an innovative total systems approach to environmental remediation that utilizes a patented chemistry called Solvated Electron Technology (SETTM). Solvated electron solutions are some of the most powerful reducing agents know. Formed by dissolving alkali and alkaline-earth metals in anhydrous liquid ammonia to produce a solution of metal cations and free electrons, solvated electron solutions are capable of providing reductants of great activity and uniqueness. They provide a highly useful mechanism for the reductive destruction of many organic molecules and are extremely effective in the dehalogenation of halogenated organic compounds. Commodore has received a nation-wide EPA operating permit for the nonthermal destruction of PCBs using this process. The SoLVTM process is a total solution approach that incorporates SETTM with pre-and post-treatments, when necessary, for environmental cleanup. It is applicable to a broad range of substrates including liquids, solids, soils, and job materials. This article presents results from several pilot, field, and commercial validation studies utilizing the SoLVTM process.  相似文献   

16.
17.
Nitrate has become an increased regulatory concern due to gradual deterioration of surface and groundwater quality primarily related to widespread fertilizer use. Remediation of nitrate is a relatively straightforward process; however, nitrate impacts to groundwater are often a symptom of a sustained source from another nitrogen form (e.g., ammonia, ammonium nitrate, urea), analogous to how nonaqueous phase liquid can serve as a long‐term source of volatile organic compounds in groundwater. Understanding the various nitrogen transformation reactions when selecting, implementing, or documenting a remedy associated with nitrate is therefore critical to successfully reaching remedial endpoints. Case studies are presented that highlight in situ remedial successes with nitrogen‐impacted groundwater and discuss the key considerations that should be factored into remedy application. ©2015 Wiley Periodicals, Inc.  相似文献   

18.
Journal of Polymers and the Environment - The present review describes the application of lignocellulosic biomass-derived nanocellulose for wastewater remediation with a focus on the removal of...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号