共查询到2条相似文献,搜索用时 2 毫秒
1.
A field demonstration of an enhanced in-situ bioremediation technology was conducted between March 1998 and August 1999 at the ITT Industries Night Vision (ITTNV) Division plant in Roanoke, Virginia. The bioremediation process was evaluated for its effectiveness in treating both chlorinated and nonchlorinated volatile organic compounds (VOCs) in groundwater located in fractured bedrock. Chlorinated compounds, such as trichloroethene (TCE), in fractured bedrock pose a challenging remediation problem. Not only are chlorinated compounds resistant to normal biological degradation, but the fractured bedrock presents difficulties to traditional techniques used for recovery of contaminants and for delivery of amendments or reagents for in-situ remediation. The demonstration was conducted under the U.S. Environmental Protection Agency's Superfund Innovative Technology Evaluation (SITE) program. The SITE program was established to promote the development, demonstration, and use of innovative treatment technologies for the cleanup of Superfund and other hazardous waste sites. This article presents selected results of the demonstration and focuses on understanding the data in light of the fractured bedrock formation. © 2002 Wiley Periodicals, Inc. 相似文献
2.
A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in‐situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1‐trichloroethane (TCA) and its daughter products, 1,1‐dichloroethene (DCE) and 1,1‐dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in‐situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short‐term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc. 相似文献