首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

2.
A field plot experiment was conducted in the Palestinian Autonomous Areas to study the effect of stonewalled terracing on soil and water conservation as compared to the nonterraced areas. Effects of the wheat canopy were considered as a second treatment. The experiment was undertaken over a period of two seasons (2000 and 2001). The results of the experiment found that the mean soil erosion was significantly lower (P < 0.05) in the terraced plots than in those that were nonterraced (182 kg/ha and 3525 kg/ha during the first season, 1769 kg/ha and 5057 kg/ha during the second season for terraced and nonterraced plots, respectively). A similar trend was observed with respect to runoff in areas under the same treatments. The wheat canopy showed lower, but not significant runoff and erosion in most of the cases for both seasons. Due to better soil and water conservation, the terraced plots obtained significantly higher total plant dry matter than nonterraced plots (1570 and 630 kg/ha in 2000, 2545 and 889 kg/ha in 2001 for terraced and nonterraced treatment, respectively). The runoff coefficient was 20% and 4% for the nonterraced and terraced plots, respectively. Rainstorms with intensity ≥4 mm/hand rainfall ≥10 mm are more likely to cause runoff and erosion.  相似文献   

3.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

4.
Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows.  相似文献   

5.
The contamination of soil and runoff water by two herbicides, diuron [N'-(3,4-dichlorphenyl)-N,N-dimethylurea] and simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), were monitored on two fields, one no-till and one tilled. Experiments were carried out in a 91.4-ha watershed in southern France during the 1997 growing season in order to understand the patterns of pesticide transport from field to watershed. The persistence of the herbicides in soil was prolonged due to the climatic conditions. At the field scale, annual herbicide loads were due to overland flow and amounted to 65.6 and 6.3 g ha(-1) of diuron for the no-till and tilled field, respectively, and to 29.6 and 1.83 g ha(-1) of simazine. Maximum herbicide concentrations exceeded 580 microg L(-1) during the first storm event after application and decreased thereafter but remained for 8 mo above 0.1 microg L(-1). At the watershed outlet, estimated annual loads amounted to 4.12 g ha(-1) of diuron and 0.56 g ha(-1) of simazine. Among them, 96% of the losses in diuron and 83% of those in simazine were caused by the fast transmission through the network of ditches of the overland flow exiting the fields. For diuron, which was sprayed over most of the vineyards, its in-stream concentrations during storm flow were close to those at the outlet of the fields. The herbicide loads in baseflow were smaller than 0.2 g ha(-1). The patterns of the loads at the field and watershed scales suggested that a major part of the herbicides leaving the fields reinfiltrated to the ground water by seepage through the ditches, and was there degraded or adsorbed.  相似文献   

6.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

7.
In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.  相似文献   

8.
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.  相似文献   

9.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   

10.
Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields.  相似文献   

11.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

12.
ABSTRACT: An excellent hydrologic record on sagebrush range-land has been developed at the Reynolds Creek Experimental Watershed in southwestern Idaho. The objectives of this paper were two-fold: (1) to analyze and describe the hydrologic record (8–18 years) from four sagebrush watersheds (1–83 ha); and (2) to evaluate the hydrology component of SPUR, a comprehensive rangeland model. The watersheds represent a gradient in elevation (1180–1658 m) and precipitation (240–350 mm/yr). Runoff was a small fraction (> 2 percent) of the total water budget for all of the watersheds. It occurred very infrequently at the three lower elevation watersheds: Summit, Flats, and Nancy Gulch. At Lower Sheep, the highest elevation watershed, runoff occurred most years for a period of 1 to 17 weeks in the winter. Frozen soil combined with rainfall or snowmelt was associated with most of the runoff from Flats and Nancy Gulch. At Summit summertime thunderstorms produced all of the runoff. The average annual sediment yield from all of the watersheds was low (17–950 kg/ha). It was highest from Summit, which had well developed alluvial channels and very steep slopes. SPUR was able to simulate runoff with reasonable accuracy only at Summit, where frozen soils were not a factor. There was poor correlation between predicted and actual annual 8ediment loss. The model tended to overpredict evapotranspiration early in the growing season and underpredict it in the late summer.  相似文献   

13.
ABSTRACT: The computer model, CREAMS, has been developed for field-sized agricultural areas to aid in best management practices evaluation and planning. A test of CREAMS was performed by comparing monthly observed and simulated values for runoff, sediment, and phosphorus exports from two agricultural fields in Vermont to determine the applicability of the model in cold climates. Water quality samples were collected from field runoff and analyzed for both total suspended solids and total phosphorus. Generally, exports were overestimated during low flow months and underestimated during high flow months. Significant r2values (p <0.05), ranging from 0.78 to 0.90, between simulated and observed data were found for all comparisons except for sediment export from one field. Comparisons of the slopes of the regressions between observed and simulated values and the ideal slope of one using t-tests revealed significant differences between simulated and observed monthly runoff, sediment, and phosphorus exports. It is postulated that this lack of adequate prediction could be attributed to the use of average monthly, instead of daily, temperature and solar radiation in calculations of evapotranspiration and snowmelt, and the use of static parameter values for parameters that vary seasonally.  相似文献   

14.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

15.
Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.  相似文献   

16.
Soil loss rates from construction sites can be 1000 times the average of natural soil erosion rates and 20 times that from agricultural lands. Silt fence (SF) is the current industry standard used to control sediment originating from construction activities. Silt fences are designed to act as miniature detention ponds. Research has indicated that SF sediment filtering efficiency is related to its ability to detain and pond water, not necessarily the filtration ability of the fabric. Design capacity and spacing is based on flow-through rate and design height. In addition, increased detention of runoff and pressure from ponding may increase the likelihood of overtopping or failure of SF in field application. Testing was conducted on compost silt socks (SS) and SF to determine sediment filtering efficiency, flow-through rate, ponding depth, overtopping point, design height, and design capacity. Results indicate flow-through rate changes with time, as does ponding depth, due to the accumulation of solids on/in the sediment filters. Changes in depth with time were a linear function of flow rate after 10 min of flow, up to the time the sediment filter is overtopped. Predicting the capacity of SF and SS to handle runoff without the filter being overtopped requires consideration of both runoff rate and length of runoff time. Data show SS half the heights of SF were less likely to overtop than SF when sediment-laden runoff water flow rates are less than 1.03 L(-1) s(-1) m(-1) (5 gpm/ft, gal per minute per lineal foot). Ponded depth behind a 61.0-cm (24 in) SF increased more rapidly than behind a 30.5-cm diam. (12 in) SS, and at the end of the thirty minutes, the depth behind the SF was 75% greater than that behind the SS. Removal of solids by the SF and the SS were not shown to be statistically different. Results were used to create a Microsoft Excel-based interactive design tool to assist engineers and erosion and sediment control planners on how to specify compost SS relative to SF in perimeter sediment control applications.  相似文献   

17.
ABSTRACT: A numerical simulation model was developed to predict the vertical and lateral percolation losses from a ponded agricultural field. The two-dimensional steady-state unsaturated/ saturated flow equation was solved using the finite-difference technique. A constant ponding depth was maintained at the soil surface with different water table conditions in an application of the model for rice fields bordered by bunds. Field experiments were conducted for two different water table depths to collect data on the spatial distribution of volumetric soil-moisture content for model verification. The measured soil-moisture content values were found to be in close agreement with those predicted by the model. The sensitivity analysis of the model with selected hydrologic conditions shows that the model is most sensitive to the values of saturated hydraulic conductivity, but relatively less sensitive to water table depth, ponding depth, and evaporation rate from the soil surface. It implies that, in a ponded rice field condition, the lateral and vertical percolation losses are mostly governed by the hydraulic conductivity of the soil. The vertical percolation losses were almost equal to the saturated hydraulic conductivity values and, in most cases, these losses increased with deeper water table depths. The lateral percolation losses also increased with deeper water table depths; however, these losses were relatively small in comparison to the vertical percolation losses. The vertical and lateral percolation losses increased with the increase in ponding depths. The lateral percolation losses through the bund decreased when the evaporation losses increased from the soil surface. The results of this study indicate that the percolation losses from a ponded field may be predicted accurately for a wide range of soil and hydrological conditions when the values of hydraulic conductivity, evaporation rate, depth of ponding, and water table depth are accurately known.  相似文献   

18.
The U.S. Environmental Protection Agency National Stormwater Calculator (NSWC) simplifies the task of estimating runoff through a straightforward simulation process based on the EPA Stormwater Management Model. The NSWC accesses localized climate and soil hydrology data, and options to experiment with low‐impact development (LID) features for parcels up to 5 ha in size. We discuss how the NSWC treats the urban hydrologic cycle and focus on the estimation uncertainty in soil hydrology and its impact on runoff simulation by comparing field‐measured soil hydrologic data from 12 cities to corresponding NSWC estimates in three case studies. The default NSWC hydraulic conductivity is 10.1 mm/h, which underestimates conductivity measurements for New Orleans, Louisiana (95 ± 27 mm/h) and overestimates that for Omaha, Nebraska (3.0 ± 1.0 mm/h). Across all cities, the NSWC prediction, on average, underestimated hydraulic conductivity by 10.5 mm/h compared to corresponding measured values. In evaluating how LID interact with soil hydrology and runoff response, we found direct hydrologic interaction with pre‐existing soil shows high sensitivity in runoff prediction, whereas LID isolated from soils show less impact. Simulations with LID on higher permeability soils indicate that nearly all of pre‐LID runoff is treated; while features interacting with less‐permeable soils treat only 50%. We highlight the NSWC as a screening‐level tool for site runoff dynamics and its suitability in stormwater management.  相似文献   

19.
ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge‐of‐field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post‐treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post‐treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge‐of‐field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal.  相似文献   

20.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号