首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

2.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

3.
ABSTRACT: Bringing water from Colorado River via the Central Arizona Project was perceived as the sole solution for Tucson Basin's water problem. Soon after Central Arizona Project's water arrived in Tucson in 1992, its quality provoked a quarrel over its use for potable purposes. A significant outcome of that quarrel was the enactment of the 1995 Proposition 200. The Proposition 200 precludes the use of Central Arizona Project's water for potable purposes, unless it is treated. Yet, it encourages using it for non‐potable purposes and for replenishing the Tucson aquifer through recharge. This paper examines the economic issues involved in utilizing Central Arizona Project's water for recharge. Four planning scenarios were designed to measure and compare the costs and benefits with and without Central Arizona Project's water recharge. Cost‐benefit analysis was utilized to measure recharge costs and benefits and to derive a rough estimate of cost savings from preventing land subsidence. The results indicate that the institutional requirements can be met with Central Arizona Project's water recharge. The economic benefits from reducing pumping cost and saving groundwater are not economically significant. Yet, when combining the use of Central Arizona Project's water for recharge and non‐potable purposes, it demonstrates positive net economic benefits.  相似文献   

4.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

5.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

6.
ABSTRACT: Stable isotopes of deuterium and oxygen-18 of surface and ground water, together with anion concentrations and hydraulic gradients, were used to interpret mixing and flow in ground water impacted by artificial recharge. The surface water fraction (SWF), the percentage of surface water in the aquifer impacted via recharge, was estimated at different locations and depths using measured deuterium/hydrogen (DIH) ratios during the 1992, 1993, and 1994 recharge seasons. Recharged surface water completely displaced the ground water beneath the recharge basins from the regional water table at 7.60 m to 12.16 m below the land surface. Mixing occurred beneath the recharge structures in the lower portions of the aquifer (>12.16 m). Approximately 12 m down-gradient from the recharge basin, the deeper zone (19.15 m depth) of the primary aquifer was displaced completely by recharged surface water within 193, 45, and 55 days in 1992, 1993, and 1994, respectively. At the end of the third recharge season, recharged surface water represented ~50 percent of the water in the deeper zone of the primary aquifer ~1000 m downgradient from the recharge basin. A classic asymmetrical distribution of recharged surface water resulted from the recharge induced horizontal and vertical hydraulic gradients. The distribution and breakthrough times of recharged surface water obtained with stable isotopes concurred with those of major anions and bromide in a tracer test conducted during the 1995 recharge season. This stable isotope procedure effectively quantified mixing between surface and ground water.  相似文献   

7.
ABSTRACT: The potential for artificial ground water recharge by continuous flooding of dormant grapevines was evaluated in the San Joaquin Valley of California using the cultivar Thompson Seedless. The study was started in 1982 and was completed in 1985 after three complete flooding cycles during dormancy. An average daily rate of recharge of 80 mm/thy for a 32-day period each year was achieved through a clay loam soil. There were no adverse effects on the grapevines and yields in the flooded plots in any of the growing seasons following recharge periods. Yields were higher in the recharge plots than in the control plots in the last year of the study. We conclude that artificial ground water recharge by continuous flooding during grapevine dormancy is a viable recharge method.  相似文献   

8.
ABSTRACT: Field experiments were conducted from 1992 to 1995 to estimate ground water recharge rates at two sites located within a 2.7‐hectare agricultural field. The field lies in a sand plain setting in central Minnesota and is cropped continuously in field corn. The sites are located at a topographically high (upland) site and a topographically low (lowland) site in an effort to quantify the effects of depression focusing of recharge. Three site‐specific methods were used to estimate recharge rates: well hydrograph analysis, chlorofluorocarbon age dating, and an unsaturated zone water balance. All three recharge methods indicated that recharge rates at the lowland site (annual average of all methods of 29 cm) exceeded those at the upland site (annual average of 18 cm). On an annual basis, estimates by the individual methods ranged from 12 to 44 percent of precipitation at the upland site and from 21 to 83 percent at the lowland site. The difference in recharge rates between the sites is primarily attributed to depression focusing of surface water runon at the lowland site. However, two other factors were also important: the presence of thin lamellae at the upland site, and coarser textured soils below a depth of 1.5 m at the lowland site.  相似文献   

9.
ABSTRACT: Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (≥45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors.  相似文献   

10.
ABSTRACT: Injection of water and subsequent withdrawal were carried out in three existing water wells (SU-10, C-105, and SU-135A) in Kuwait. The objective of the study was to assess the technical feasibility of artificial recharge in the carbonate Dammam Formation and the clastic Kuwait Group aquifers. In the absence of any pretreatment of injection water and measures for maintenance of line pressure, clogging from suspended solids and air entrapment occurred in all three experiments. It was, however, possible to inject for one month in Wells SU-10 and C-105 where injection took place in the Dammam aquifer. In Well SU-135A, where the Kuwait Group aquifer was the target for injection, clogging became so severe that the injection experiment had to be abandoned. The injection/withdrawal data were analyzed with the help of a multi-aquifer flow model and a transport model. The models took into account the effects of crossflow within the boreholes on the distribution of intake and discharge rates for different aquifers, and hence, on the recovery efficiency. The experiments suggested that the artificial recharge of the Dammam and the Kuwait Group aquifers was technically feasible. The problem of clogging was, however, more severe for the Kuwait Group.  相似文献   

11.
ABSTRACT: An evaluation of the intermedia movement of pesticides applied under various land management systems already in place, or to be implemented, under the Conservation Reserve and Conservation Compliance programs is presented. The simulation modeling approach followed in this analysis consists of a mathematical programming model and leaching/surface runoff, Pesticide Root Zone Model (PRZM) models. Special care was taken to ensure that the physical model was sensitive to the chemical characteristics of individual pesticides and the important physical changes brought about by different agricultural practices. Results show that, although these programs as now planned, increase farm income and achieve soil conservation goals, they may adversely affect ground water quality. Also, depending on soil and location characteristics, there are tradeoffs between surface and ground water quality implications. Hence, if these programs are to address water quality problems, the recommended practices must be evaluated for their impact on water quality, particularly in potentially vulnerable areas.  相似文献   

12.
ABSTRACT: To quantify and model the natural ground water recharge process, six sites located in the midwest and eastern United States where previous water balance observations had been made were compared to computerized techniques to estimate: (1) base flow and (2) ground water recharge. Results from an existing automated digital filter technique for separating baseflow from daily streamflow records were compared to baseflow estimates made in the six water balance studies. Previous validation of automated baseflow separation techniques consisted only of comparisons with manual techniques. In this study, the automated digital filter technique was found to compare well with measured field estimates yielding a monthly coefficient of determination of 0.86. The recharge algorithm developed in this study is an automated derivation of the Rorabaugh hydrograph recession curve displacement method that utilizes daily streamflow. Comparison of annual recharge from field water balance measurements to those computed with the automated recession curve displacement method had coefficients of determination of 0.76 and predictive efficiencies of 71 percent. Monthly estimates showed more variation and are not advocated for use with this method. These techniques appear to be fast, reproducible methods for estimating baseflow and annual recharge and should be useful in regional modeling efforts and as a quick check on mass balance techniques for shallow water table aquifers.  相似文献   

13.
ABSTRACT: Illinois data from 168 months (1986–1999) were investigated to determine the responses of surface‐water and ground‐water resources to precipitation. Such responses were generally within the month of occurrence or one to two months later, with recovery being reached another one to three months into the future, depending on season of the year. Although the drought of 1988 immediately impacted surface‐water and ground‐water resources, the time of recovery was substantially longer compared to those of individual dry months, generally continuing for several months. The extremely wet summer of 1993 resulted in elevated responses in water resources almost immediately, but in this instance continued through the following fall and winter, into the spring of 1994.  相似文献   

14.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

15.
ABSTRACT: A detailed but simple hydrologic budget for the entire Rattlesnake Creek basin (3,768 km2) in south-central Kansas was developed. With this budget, using minimal daily-weather input data and the soil-plant-water system-analysis methodology, we were able to characterize the spatial distribution of the hydrologic components of the water balance within the basin. A combination of classification and meteorological methods resulted in a basinwide integration methodology. Using this methodology, we found that, in addition to obvious climatic controls, soil, vegetation, and land-use factors also exert considerable influence on the water balance of the area. The available-water capacity (AWC) of soil profiles plays a dominant role in soil-water-deficit development and deep drainage. Vegetation and dryland or irrigated farming particularly affect the evapotranspiration (ET) components, with ET from irrigated corn and alfalfa being two to three times that from wheat. Deep drainage from irrigated wheat fields was found to be significantly higher than that from grassland and dryland wheat; deep drainage from alfalfa is practically nonexistent. We demonstrated how vegetation changes may affect components of the hydrologic cycle. We also showed that different portions of the watershed have different water-balance components and that use of single average values of hydrologic variables in management practices may not be realistic.  相似文献   

16.
ABSTRACT. The response of stream-unconfined aquifer systems to localized recharge is investigated by means of a two-dimensional finite element model. A variational approach is used in conjunction with the finite element method to solve the ground water flow equation. Linear approximated triangular elements are used to calculate the hydraulic head distribution in the flow region. The Crank-Nicholson centered scheme of numerical integration is employed to approximate the time derivative in the flow equation. A computer program is developed to calculate the hydraulic head distribution in the flow region. Solutions provided by the finite element model should prove useful in the evaluation of quantitative and qualitative changes in aquifer systems due to natural or artificial recharge. In addition, they should prove useful in the study of irrigation and drainage problems.  相似文献   

17.
ABSTRACT: The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.  相似文献   

18.
ABSTRACT: Water supplies in Arizona are becoming increasingly limited because municipal, industrial, and agricultural consumption depletes ground water reserves by three million acre-feet annually. Additional demands are being created by electric power generation, particularly in northeastern Arizona where ground water pumpage is expected to escalate by sixfold during the next 10 years. The results of a study to determine the ease and feasibility of using satellite imagery as a tool in exploring for new sources of ground water are reported. Lineaments detected on Landsat images of two sites were mapped and correlated with well data in the two study areas by means of well centered grid model. The correlations developed between lineament density and water well data in the two study sites support the hypothesis that a relationship exists between regional geologic structure and the presence of ground water.  相似文献   

19.
round water drought events were derived by taking a truncation level through the time series of daily ground water depth that are recorded elevation differences between the water table and land surface at a well site. Droughts of various truncation levels at 70, 80, 90, and 95 percent, were obtained, where a 70 percent truncation level means that 70 percent of ground water depth data are less than or equal to the truncated value. The conditional probability that a drought occurring at a certain truncation level will prolong and advance to that of the next higher level was estimated. The regionalization analysis was conducted assuming that conditional probabilities estimated at selected wells are regionalized variables. Contour lines of conditional probabilities for each truncation level were constructed to express their spatial variability in the region. Estimation errors associated with the regionalization were reasonably small.  相似文献   

20.
: A methodology for determining an optimal irrigation policy to obtain maximum economic yield of crops is presented. The method is based on an empirical response function, relating crop yield to soil moisture stress in different stages of plant growth. The function was developed from data obtained in field experiments on several crops and may be useful in determining when and how much to irrigate. Additionally, a mathematical expression is derived from that function which estimates the economic loss if irrigation is not applied in the opportune moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号