共查询到20条相似文献,搜索用时 15 毫秒
1.
Jon E. Schoonover Karl W. J. Williard 《Journal of the American Water Resources Association》2003,39(2):347-354
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone. 相似文献
2.
N. J. Snyder S. Mostaghimi D. F. Berry R. B. Reneau S. Hong P W. McClellan E. P. Smith 《Journal of the American Water Resources Association》1998,34(2):385-395
ABSTRACT: A field monitoring study of a riparian forest buffer zone was conducted to determine the impact of the riparian ecosystem on reducing the concentration of agricultural nonpoint source pollutants. Groundwater samples were collected from 20 sampling locations between May 1993 and December 1994, and analyzed for NO3-N, PO4, and NH4-N. Statistical analyses such as Friedman's test, cluster analysis, cross correlation analysis and Duncan's test were performed for the nutrient data. The study showed that the ripanan buffer zone was effective in reducing nitrate concentrations originating from upland agricultural fields. Instream nitrate concentrations were 48 percent less than those measured in the agricultural field. Reductions in concentrations in sampling locations at the wetland edge ranged from 16 to 70 percent. The mean nitrate concentrations in forested hill slope were 45 percent less than concentrations in a well located in an upland agricultural field. Meanwhile, the concentrations of phosphate and ammonia did not follow any specific spatial trend and were generally higher during the summer season for most sampling locations. 相似文献
3.
ABSTRACT: This study determines the most cost effective spatial pattern of farming systems for improving water quality and evaluates the economic value of riparian buffers in reducing agricultural nonpoint source pollution in a Midwestern agricultural watershed. Economic and water quality impacts of alternative farming systems are evaluated using the CARE and SWAT models, respectively. The water quality benefits of riparian buffers are estimated by combining experimental data and simulated water quality impacts of fanning systems obtained using SWAT. The net economic value of riparian buffers in improving water quality is estimated by total watershed net return with riparian buffers minus total watershed net return without riparian buffers minus the opportunity cost of riparian buffers. Exclusive of maintenance cost, the net economic value of riparian buffers in reducing atrazine concentration from 45 to 24 ppb is $612,117 and the savings in government cost is $631,710. Results strongly support efforts that encourage farmers to develop or maintain riparian buffers adjacent to streams. 相似文献
4.
ABSTRACT: Economic values of riparian buffers in a watershed are evaluated by the changes in the net economic return for farming with and without riparian buffers when achieving the same water quality objectives. The simulated water quality impacts of alternative farming systems using SWAT and experimental data for riparian buffers are used in a mathematical optimization model to estimate net economic return for farming subject to a water quality objective. Physical characteristics such as stream length, channel slope, average land slope, cropland percentage and several soil attributes are identified in the watershed using ARC/INFO GIS. A regression model is then used to evaluate the impacts of these physical characteristics on the estimated economic values of buffers. The study is conducted in Goodwater Creek watershed, Missouri. The results show the estimated economic value of buffers is significantly affected by some soil properties, stream length, and cropland percentage in watershed and can be used to improve the effectiveness of riparian buffers at watershed and regional levels. 相似文献
5.
This paper presents key challenges in modeling water quality processes of riparian ecosystems: How can the spatial and temporal extent of water and solute mixing in the riparian zone be modeled? What level of model complexity is justified? How can processes at the riparian scale be quantified? How can the impact of riparian ecosystems be determined at the watershed scale? Flexible models need to be introduced that can simulate varying levels of hillslope‐riparian mixing dictated by topography, upland and riparian depths, and moisture conditions. Model simulations need to account for storm event peak flow conditions when upland solute loadings may either bypass or overwhelm the riparian zone. Model complexity should be dictated by the level of detail in measured data. Model algorithms need to be developed using new macro‐scale and meso‐scale experiments that capture process dynamics at the hillslope or landscape scales. Monte Carlo simulations should be an integral part of model simulations and rigorous tests that go beyond simple time series, and point‐output comparisons need to be introduced. The impact of riparian zones on watershed‐scale water quality can be assessed by performing simulations for representative hillsloperiparian scenarios. 相似文献
6.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual. 相似文献
7.
Arthur J. Gold Peter M. Groffman Kelly Addy D. Q. Kellogg Mark Stolt Adam E. Rosenblatt 《Journal of the American Water Resources Association》2001,37(6):1457-1464
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases. 相似文献
8.
Dan Binkley George G. Ice Jason Kaye Christopher A. Williams 《Journal of the American Water Resources Association》2004,40(5):1277-1291
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies. 相似文献
9.
John B. Braden Noelwah R. Netusil Richard F Kosobud 《Journal of the American Water Resources Association》1994,30(5):781-791
ABSTRACT: This paper summarizes key provisions of the Clinton Administration's proposals for change in the Clean Water Act. Two of the important themes for change are tougher controls for non-point source pollution and the use of market-based instruments. A detailed analysis of market-based abatement suggests limited potential for reducing costs. The keys to nonpoint source pollution control are clearer definition of property rights combined with changes in government programs that encourage polluting activities. 相似文献
10.
Zeyuan Qiu Tony Prato Gerry Boehrn 《Journal of the American Water Resources Association》2006,42(6):1583-1596
Abstract: This study evaluates the economic value of riparian buffers and open space in a suburban watershed through two nonmarket valuation methods. A contingent valuation survey was implemented in the Dardenne Creek watershed, a suburban watershed of the St. Louis metropolitan area in Missouri, to evaluate the residents' perceptions of and willingness to pay (WTP) for adopting riparian buffers and preserving farmland in a hypothetical real estate market. A hedonic pricing model based on actual sale prices of homes in the watershed was applied to estimate the market value of open space and other environmental conditions such as flood zone and stream proximity in the study area. The results showed that residents' WTP was consistent with the economic values of open space and proximity to streams embedded in existing home prices. Through a better understanding of residents' perceptions and values, riparian buffer and open space programs can be designed and promoted to achieve greater implementation success and environmental benefit. 相似文献
11.
Kwang‐Sik Yoon Jae‐Young Cho Jin‐Kyu Choi Jae‐Gwon Son 《Journal of the American Water Resources Association》2006,42(5):1205-1216
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage. 相似文献
12.
Joseph P. Herring Richard C. Schultz Thomas M. Isenhart 《Journal of the American Water Resources Association》2006,42(1):145-155
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed. 相似文献
13.
Dana W. Kolpin Jack E. Barbash Robert J. Gilliom 《Journal of the American Water Resources Association》2002,38(1):301-311
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection. 相似文献
14.
Daniel E. Line 《Journal of the American Water Resources Association》2002,38(6):1691-1701
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek. 相似文献
15.
Penelope L. Diebel Daniel B. Taylor Sandra S. Batie Conrad D. Heatwole 《Journal of the American Water Resources Association》1992,28(4):755-761
ABSTRACT: Protection of ground water quality is of considerable importance to local, state, and federal governments. This study uses a 15-year mathematical programming model to evaluate the effectiveness of low-input agriculture, under alternative policy scenarios, as a strategy to protect ground water quality in Richmond County, Virginia. The analysis considers eight policy alternatives: cost-sharing for green manures, two restrictions on atrazine applications levels, chemical taxation, a restriction on potential chemical and nitrogen levels in ground water only and in surface and ground water, and two types of land retirement programs. The CREAMS and GLEAMS models were used to estimate nitrate and chemical leaching from the crop root zone. The economic model evaluates production practices, policy constraints, and water quality given a long-term profit maximizing objective. The results indicate that low-input agriculture alone may not be an effective ground water protection strategy. The policy impacts include partial adoption of low-input practices, land retirement, and the substitution of chemicals. Only mandatory land retirement policies reduced all chemical and nutrient loadings of ground water; however, they did not promote the use of low-input agricultural practices. 相似文献
16.
Wayne W. Lapham Michael J. Moran John S. Zogorski 《Journal of the American Water Resources Association》2000,36(6):1321-1334
ABSTRACT: The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint‐source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water‐Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well‐casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well‐casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint‐source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States. 相似文献
17.
Mohammad N. Almasri Jagath J. Kaluarachchi 《Journal of the American Water Resources Association》2004,40(1):165-186
ABSTRACT: This paper presents a modeling approach based on a geographic information system (GIS) to estimate the variability of on‐ground nitrogen loading and the corresponding nitrate leaching to ground water. The methodology integrates all point and nonpoint sources of nitrogen, the national land cover database, soil nitrogen transformations, and the uncertainty of key soil and land use‐related parameters to predict the nitrate mass leaching to ground water. The analysis considered 21 different land use classes with information derived from nitrogen sources such as fertilizer and dairy manure applications, dairy lagoons, septic systems, and dry and wet depositions. Simulations were performed at a temporal resolution of one month to capture seasonal trends. The model was applied to a large aquifer of 376 square miles in Washington State that serves more than 100,000 residents with drinking water. The results showed that dairy manure is the main source of nitrogen in the area followed by fertilizers. It was also seen that nitrate leaching is controlled by the recharge rate, and there can be a substantial buildup of soil nitrogen over long periods of time. Uncertainty analysis showed that denitrification rate is the most influential parameter on nitrate leaching. The results showed that combining management alternatives is a successful strategy, especially with the use of nitrification inhibitors. Also, change in the land use pattern has a noticeable impact on nitrate leaching. 相似文献
18.
Zhi-Jun Liu George R. Hallberg Dale L. Zimmerman Robert D. Libra 《Journal of the American Water Resources Association》1997,33(6):1209-1218
ABSTRACT: Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981–1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion. 相似文献
19.
JoAnn M. Hanowski Peter T. Walter Gerald J. Niemi 《Journal of the American Water Resources Association》2002,38(3):633-639
ABSTRACT: Forest buffers adjacent to water bodies are widely prescribed in forest management to protect ecological functions of riparian systems. To date, buffers have been applied on the landscape uniformly without quantifying their effectiveness or the effects they have on landscape characteristics. Our objective was to quantify landscape characteristics (amount of edge and interior forest) when buffers were applied to water bodies in a 100 by 100 km area of northern Minnesota. We used a Landsat classified image in a geographic information system platform to apply two buffer widths ?28.5 m and 57 m — to water bodies, including nonforested wetlands, intermittent or perennial streams, and lakes. A total of 107,141 ha (18.3 percent) of the forest area was adjacent to and within 28.5 m of these water bodies, while 201,457 ha of forest was within 57 m, representing 34.4 percent of the total forest area. Imposing a 28.5 m buffer on water bodies increased the amount of edge and interior forest in the study area. When water bodies were buffered with a 57 m forest strip, we found a slight increase in forest edge from the current condition, and this buffer width resulted in the largest amount of interior forest. Interior forest increased with the 57 m buffer due to the density of water bodies in this region; adjacent water bodies coalesced when buffers were applied and formed isolated forest islands that contained forest interior habitat. Instead of wholesale application of set width riparian buffers, we suggest that ecological conditions of riparian areas be evaluated on a site level and that areas that currently provide important riparian conditions be maintained on the landscape with appropriate management practices. 相似文献
20.
Zhi-Jun Liu George R. Hallberg George P. Malanson 《Journal of the American Water Resources Association》1997,33(6):1219-1235
ABSTRACT: Most research on the temporal aspect of nitrate pollution in water resources has focused on surface water. Comprehensive studies on the dynamics of nitrate in ground water are lacking, especially on a drainage basin scale and for relatively long periods of time. In this study, structural equation modeling is applied in investigating the influences of climate, hydrology, and nitrogen management in agricultural production on nitrate concentration in the Big Spring Basin, Iowa, over a 10-year period. The study shows that for given hydrogeological settings, nitrogen management practices and climate are the two most important factors that affect nitrate dynamics. The long-term trend of nitrate is closely related to the nitrogen input primarily determined by management practices. The potential effects of nitrogen management, however, are contingent on the variations of climate. The improvements in water quality (reduced nitrate concentration and loads) in relation to improved nitrogen management are often overshadowed by the impact of climate, especially in extremely dry or wet years. The variations of climate and hydrology have much greater impacts on the nitrate dynamics than the changes in nitrogen input. This study reveals significant seasonal variation in the relations between nitrate concentration and influencing factors, which is also closely related to the seasonal variation in climate. Assessment of management practices and resultant water quality should consider the impact of short- and long-term climate dynamics. 相似文献