首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One central issue affecting the health of native fish species in the Pacific Northwest is water temperature. In situ observation methods monitor point temperatures, while thermal infrared (TIR) remote sensing captures spatial variations. Satellite‐based TIR sensors have the ability to view large regions in an instant. Four Pacific Northwest river reaches were selected to test the ability of both satellite‐based and moderate resolution aircraft‐based TIR remote sensing products to measure river temperatures. Images with resolutions of 5, 15, and 90 meters were compared with instream temperature observations to assess how along stream radiant temperatures are affected by resolution, reach width, and sensor platform. Where the stream reach can be resolved by the sensor, all sensors obtain water temperatures within ±2°C of instream observations. Along stream temperature variations of up to ±5°C were also observed. Trends were similar between two sets of TIR images taken several hours apart, indicating that the sensors are observing actual temperature patterns from the river surface. If sensor resolution is sufficient to obtain fully resolved water pixels in the river reach, accurate temperatures and spatial patterns can be observed. The current generation of satellite‐based TIR sensors is, however, only able to resolve about 6 percent of all Washington reaches listed as thermally impaired.  相似文献   

2.
ABSTRACT: Records of hourly water temperatures for two streams in the Upper Mississippi River basin were used to find the error between instantaneous measurements of stream water temperatures and true daily averages. The instantaneous summer water temperature measurements were assumed to be collected during daylight hours, and measurement times were selected randomly. The absolute error at the 95 percent confidence level of randomly collected stream water temperatures was less than 0.9°C for a 1 to 5m deep large river, but as large as 3.6°C for a 0.3 to lm deep small stream. Temperature readings of morning samples were usually below daily average values, and afternoon readings were usually above. Daily mean water temperatures were obtained with less than 0.23°C standard deviation from true daily averages if the daily maximum and minimum water temperatures were averaged. Sample results were obtained for the open water (summer) season only, since diurnal water temperature fluctuations in ice covered streams are usually negligible.  相似文献   

3.
ABSTRACT: Air temperatures are sometimes used as easy substitutes for stream temperatures. To examine the errors associated with this substitution, linear relationships between 39 Minnesota stream water temperature records and associated air temperature records were analyzed. From the lumped data set (38,082 daily data pairs), equations were derived for daily, weekly, monthly, and annual mean temperatures. Standard deviations between all measured and predicted water temperatures were 3.5°C (daily), 2.6°C (weekly), 1.9°C (monthly), and 1.3°C (annual). Separate analyses for each stream gaging station gave substantially lower standard deviations. Weather monitoring stations were, on average, 37.5 km from the stream. The measured water temperatures follow the annual air temperature cycle closely. No time lags were taken into account, and periods of ice cover were excluded from the analysis. If atmospheric CO2 doubles in the future, air temperatures in Minnesota are projected (CCC GCM) to rise by 4.3°C in the warm season (April-October). This would translate into an average 4.1°C stream temperature rise, provided that stream shading would remain unaltered.  相似文献   

4.
ABSTRACT: Air temperatures are sometimes used as substitutes for stream temperatures. To examine the errors associated with this procedure, linear relationships between stream temperatures, T, and air temperatures, Ta, recorded for 11 streams in the central U.S. (Mississippi River basin) were analyzed. Weather stations were an average 42 miles (range 0 to 144 miles) from the rivers. The general equations, Tw= 5.0 + 0.75 Ta and Tw= 2.9 + 0.86 Ta with temperatures in °C, were derived for daily and weekly water temperatures, respectively, for the 11 streams studied. The simulations had a standard deviation between measurements and predictions of 2.7°C (daily) and 2.1°C (weekly). Equations derived for each specific stream individually gave lower standard deviations, i.e., 2.1°C and 1.4°C, respectively. Small, shallow streams had smaller deviations than large, deep rivers. The measured water temperatures follow the air temperatures closely with some time lag. time lags ranged from hours to days, increasing with stream depth. Taking into account these time lags improved the daily temperature predictions slightly. Periods of ice cover were excluded from the analysis.  相似文献   

5.
In this study, we demonstrate a physically based semi-Lagrangian water temperature model known as the River Basin Model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrological model and Weather Research & Forecasting Model in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data available from six river gages located in the MRB. Further sensitivity analysis indicates that the mean water temperatures may increase by 1.3, 1.5, and 1.8°C in northern, central, and southern MRB zones under a hypothetical uniform air temperature increase of 3.0°C. If air temperatures increase uniformly by 6.0°C in this scenario, then water temperatures are projected to increase by 3.3, 3.5, and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1.0 to 8.0°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. In addition, increased water temperatures interact with nutrient loadings from sources throughout the MRB, which is expected to exacerbate harmful algal blooms and dead zones in the Gulf of Mexico.  相似文献   

6.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

7.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

8.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

9.
ABSTRACT: Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12° Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.  相似文献   

10.
ABSTRACT: The Salmon Creek Watershed drains 325 km2 of forested terrain in the Cascade Mountains of western Oregon. Over a 30–year period (from 1955 to 1984) average daily maximum and minimum stream temperatures, calculated from the 10 warmest days of each year, have risen 6°C and 2°C, respectively. In contrast, a small decrease in maximum air temperatures was found over the same period. Regression analysis indicated a highly significant (p < 0.01) relationship between a cumulative index of forest harvesting and maximum stream temperatures. Maximum temperatures also tended to increase for several years following major peak flow events. The interaction between harvest activity (logging and road construction), changing forest and riparian management practices and the occurrence of natural hydrologic events (peak flows and associated mass soil movements) tend to obscure specific cause-and-effect relationships regarding long-term changes in maximum stream temperature.  相似文献   

11.
Simulations of stream temperatures showed a wide range of future thermal regimes under a warming climate — from 2.9°C warmer to 7.6°C cooler than current conditions — depending primarily on shade from riparian vegetation. We used the stream temperature model, Heat Source, to analyze a 37‐km study segment of the upper Middle Fork John Day River, located in northeast Oregon, USA. We developed alternative future scenarios based on downscaled projections from climate change models and the composition and structure of native riparian forests. We examined 36 scenarios combining future changes in air temperature (ΔTair = 0°C, +2°C, and +4°C), stream discharge (ΔQ = ?30%, 0%, and +30%), and riparian vegetation (post‐wildfire with 7% shade, current vegetation with 19% shade, a young‐open forest with 34% shade, and a mature riparian forest with 79% effective shade). Shade from riparian vegetation had the largest influence on stream temperatures, changing the seven‐day average daily maximum temperature (7DADM) from +1°C to ?7°C. In comparison, the 7DADM increased by 1.4°C with a 4°C increase in air temperature and by 0.7°C with a 30% change in discharge. Many streams throughout the interior western United States have been altered in ways that have substantially reduced shade. The effect of restoring shade could result in future stream temperatures that are colder than today, even under a warmer climate with substantially lower late‐summer streamflow.  相似文献   

12.
Channel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources. To facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for perennial stream segments across the conterminous United States. We used random forest models to predict wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field measurements of the National Rivers and Streams Assessment. Observed channel widths varied from <5 to >2000 m and depths varied from <2 to >125 m. Metrics of watershed area, runoff, slope, land use, and more were used as model predictors. The models had high pseudo R2 values (0.70–0.91) and median absolute errors within ±6% to ±21% of the interquartile range of measured values across 10 stream orders. Predicted channel dimensions can be joined to 1.1 million stream segments of the 1:100 K resolution National Hydrography Dataset Plus (version 2.1). These predictions, combined with a rapidly growing body of nationally available data, will further enhance our ability to study and protect aquatic resources.  相似文献   

13.
Arp, C.D., B.M. Jones, M. Whitman, A. Larsen, and F.E. Urban, 2010. Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling. Journal of the American Water Resources Association (JAWRA) 46(4): 777-791. DOI: 10.1111/j.1752-1688.2010.00451.x Abstract: Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.  相似文献   

14.
ABSTRACT: A paired watershed experiment on the southeastern Piedmont to determine the effect of clearcutting loblolly pine on water quantity, quality, and timing has shown that stream water temperatures we increased as much as 20°F even though a partial buffer strip of trees and shrubs were left in place to shade the stream. Water time minimum stream temperatures were lowered as much as 10°F by the same treatment. A stream temperature model now in use did not predict such elevated temperatures. The authors suggest that forest cover reductions in areas of gentle land relief may elevate the temperature of shallow ground water moving to the stream, even with a substantial buffer strip Ln place.  相似文献   

15.
Riparian forests attenuate solar radiation, thereby mediating an important component of the thermal budget of streams. Here, we investigate the relationship between riparian degradation, stream temperature, and channel width in the Chehalis River Basin, Washington State. We used lidar data to measure canopy opening angle, the angle formed between the channel center and trees on both banks; we assumed historical tree heights and calculated the change in canopy angle relative to historical conditions. We then developed an empirical relationship between canopy angle and water temperature using existing data, and simulated temperatures between 2002 and 2080 by combining a tree growth model with climate change scenarios from the NorWeST regional prediction. The greatest change between historical and current conditions (~7°C) occurred in developed portions of the river network, with the highest values of change predicted at channel widths less than ~40 m. Tree growth lessened climate change increases in maximum temperature and the length of river exceeding biologically critical thresholds by ~50%–60%. Moreover, the maximum temperature of channels with bankfull widths less than ~50 m remained similar to current conditions, despite climate change increases. Our findings are consistent with a possible role for the riparian landscape in explaining the low sensitivity of stream temperatures to air temperatures observed in some small mountain streams.  相似文献   

16.
ABSTRACT: The resource management problem for the Middle Platte ecosystem is the insufficient water available to meet both instream ecological demands and out‐of‐stream economic needs. This problem of multiple interest groups competing for a limited resource is compounded by sharp disagreement in the scientific community over endangered species' needs for instream flows. In this study, game theory was used to address one dimension of this resource management problem. A sequential auction with repeated bidding was used to determine how much instream flow water each of three states — Colorado, Nebraska, and Wyoming — will provide and at what price. The results suggest that the use of auction mechanisms can improve the prospects for reaching a multi‐state agreement on who will supply instream flow water, if the auction is structured to discourage misrepresentation of costs and if political compensation is allowed.  相似文献   

17.
ABSTRACT The effects of maintaining a 19 ha Colorado montane reservoir in a thermally destratified condition for one year were evaluated. Water temperatures were kept nearly vertically agd horizontally isothermal throughout the year. The weighted mean temperature of the lake was 1-4°C colder in winter and 1-2°C warmer in summer than normal. Deep water in summer was up to 6°C warmer than typical hypolimnion temperatures, but summer surface temperature was unaltered. Without destratification dissolved oxygen depletion develops in summer and winter, but by eliminating stratification, oxygen was kept near saturation throughout the year. Alkalinity, pH, conductivity, and total residue were not significantly affected. Seston decreased which was probably due to declines in planktonic diatom populations. Increases in iron and manganese did not occur in deep water during destratification. Calcium concentrations increased slightly. Magnesium and most anions (chloride, nitrate-N, and silica) were not greatly altered, but sulfate concentration was reduced. Artificial destratification, as a reservoir management tool, will be very useful in altering chemical problems; particularly increasing oxygen and decreasing iron and manganese concentrations.  相似文献   

18.
ABSTRACT: We apply a physically based lake model to assess the response of North American lakes to future climate conditions as portrayed by the transient trace-gas simulations conducted with the Max Planck Institute (ECHAM4) and the Canadian Climate Center (CGCM1) atmosphere-ocean general circulation models (A/OGCMs). To quantify spatial patterns of lake responses (temperature, mixing, ice cover, evaporation) we ran the lake model for theoretical lakes of specified area, depth, and transparency over a uniformly spaced (50 km) grid. The simulations were conducted for two 10-year periods that represent present climatic conditions and those around the time of CO2 doubling. Although the climate model output produces simulated lake responses that differ in specific regional details, there is broad agreement with regard to the direction and area of change. In particular, lake temperatures are generally warmer in the future as a result of warmer climatic conditions and a substantial loss (> 100 days/yr) of winter ice cover. Simulated summer lake temperatures are higher than 30°C over the Midwest and south, suggesting the potential for future disturbance of existing aquatic ecosystems. Overall increases in lake evaporation combine with disparate changes in A/OGCM precipitation to produce future changes in net moisture (precipitation minus evaporation) that are of less fidelity than those of lake temperature.  相似文献   

19.
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.  相似文献   

20.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号