首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

2.
Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.  相似文献   

3.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

4.
Forty‐five flood control reservoirs, authorized in the Watershed Protection and Flood Prevention Act 1954, were installed by United States Department of Agriculture (USDA) between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost sediment and flood storage capacity due to sedimentation, with rates dependent on upstream land use and climate variability. In this study, sedimentation rates for 12 reservoirs representing three major land use categories within LWREW were measured based on bathymetric surveys that used acoustic profiling system. Physiographic and climate attributes of drainage area of surveyed reservoirs were extracted from publicly available data sources including topographic maps, digital elevation models, USDA Natural Resource Conservation Service soils, and weather station databases. Correlation, principal component analysis, and stepwise regression were utilized to analyze the relationship between normalized reservoir sedimentation rates (ReSRa) and the drainage area characteristics to determine the major variables controlling sedimentation within the LWREW. Percent of drainage area with extreme slopes, saturated hydraulic conductivity, and maximum daily rainfall event recorded in spring explained most of the variability in ReSRa. It was also found that percent reduction in reservoir surface area can be used as a surrogate for estimating ReSRa. The implications of the results are discussed.  相似文献   

5.
Biological Effects of Fine Sediment in the Lotic Environment   总被引:27,自引:0,他引:27  
/ Although sedimentation is a naturally occurring phenomenon inrivers, land-use changes have resulted in an increase in anthropogenicallyinduced fine sediment deposition. Poorly managed agricultural practices,mineral extraction, and construction can result in an increase in suspendedsolids and sedimentation in rivers and streams, leading to a decline inhabitat quality. The nature and origins of fine sediments in the loticenvironment are reviewed in relation to channel and nonchannel sources andthe impact of human activity. Fine sediment transport and deposition areoutlined in relation to variations in streamflow and particle sizecharacteristics. A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources,transport, and deposition processes in the river catchment. The multiplecauses and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identifiedand reviewed to provide river managers with a guide to source material. Therestoration of rivers with fine sediment problems are discussed in relationto a holistic management framework to aid in the planning and undertaking ofmitigation measures within both the river channel and surrounding catchmentarea.KEY WORDS: Sedimentation; Fine sediment; Holistic approach; Ecologicalimpact; River restoration  相似文献   

6.
Abstract: Information on the nature and relative contribution of different watershed sediment sources is recognized as a key requirement in the design and implementation of targeted management strategies for sediment control. A direct method of assessing sediment sources in a watershed that has attracted attention in recent years is sediment fingerprinting. The aim of this article is to describe the development of sediment fingerprinting as a research tool and to consider how the method might be transformed from a research tool to a management tool within a regulatory framework, with special reference to the United States total maximum daily load (TMDL) program. When compared with the current source assessment tools in developing sediment TMDLs, sediment fingerprinting offers considerable improvement as a tool for quantifying sources of sediment in terms of source type (e.g., channel vs. hillslope) as well as spatial location (subwatershed). While developing a conceptual framework for sediment TMDLs, we recognize sediment fingerprinting along with sediment budgeting and modeling as valuable tools in the TMDL process for developing justifiable sediment TMDLs. The discussions presented in this article may be considered as a first step toward streamlining the sediment fingerprinting approach for its wider application in a regulatory framework.  相似文献   

7.
Many models of phosphorus (P) transfer at the catchment scale rely on input from generic databases including, amongst others, soil and land use maps. Spatially detailed geochemical data sets have the potential to improve the accuracy of the input parameters of catchment-scale nutrient transfer models. Furthermore, they enable the assessment of the utility of available, generic spatial data sets for the modeling and prediction of soil nutrient status and nutrient transfer at the catchment scale. This study aims to quantify the unique and joint contribution of soil and sediment properties, land cover, and point-source emissions to the spatial variation of P concentrations in soil, streambed sediments, and stream water at the scale of a medium-sized catchment. Soil parent material and soil chemical properties were identified as major factors controlling the catchment-scale spatial variation in soil total P and Olsen P concentrations. Soil type and land cover as derived from the generic spatial database explain 33.7% of the variation in soil total P concentrations and 17.4% of the variation in Olsen P concentrations. Streambed P concentrations are principally related to the major element concentrations in streambed sediment and P delivery from the hillslopes due to sediment erosion. During base flow conditions, the total phosphorus (<0.45 microm) concentrations in stream water are mainly controlled by the concentrations of P and the major elements in the streambed sediment.  相似文献   

8.
Historical and recent remote sensing data can be used to address temporal and spatial relationships between upland land cover and downstream vegetation response at the watershed scale. This is demonstrated for sub-watersheds draining into Elkhorn Slough, California, where salt marsh habitat has diminished because of the formation of sediment fans that support woody riparian vegetation. Multiple regression models were used to examine which land cover variables and physical properties of the watershed most influenced sediment fan size within 23 sub-watersheds (1.4 ha to 200 ha). Model explanatory power increased (adjusted R(2) = 0.94 vs. 0.75) among large sub-watersheds (>10 ha) and historical watershed variables, such as average farmland slope, flowpath slope, and flowpath distance between farmland and marsh, were significant. It was also possible to explain the increase in riparian vegetation by historical watershed variables for the larger sub-watersheds. Sub-watershed area is the overriding physical characteristic influencing the extent of sedimentation in a salt marsh, while percent cover of agricultural land use is the most influential land cover variable. The results also reveal that salt marsh recovery depends on relative cover of different land use classes in the watershed, with greater chances of recovery associated with less intensive agriculture. This research reveals a potential delay between watershed impacts and wetland response that can be best revealed when conducting multi-temporal analyses on larger watersheds.  相似文献   

9.
ABSTRACT: The Buffalo River is a tributary to the Mississippi River in west-central Wisconsin that drains a watershed dominated by agricultural land uses. Since 1935, backwater from Lock and Dam 4 on the Mississippi River has inundated the mouth of the Buffalo's valley. Resurveys of a transect first surveyed across the lake in 1935 and cesium-137 dating of backwater sediments reveal that sedimentation rates at the Buffalo's mouth have remained unchanged since the mid-1940s. Study results indicate that sediment yields from the watershed have persisted at relatively high levels over a period of several decades despite pronounced trends toward less cultivated land and major efforts to control soil erosion from agricultural land. The maintenance of sediment yields is probably due to increased channel conveyance capacities resulting from incision along some tributary streams since the early 1950s. Post-1950 incision extended the network of historical incised tributary channels, enhancing the efficient delivery of sediment from upland sources to downstream sites.  相似文献   

10.
In the Ohio River (OR), backwater confluence sedimentation dynamics are understudied, however, these river features are expected to be influential on the system’s ecological and economic function when integrated along the river’s length. In the following paper, we test the efficacy of organic and inorganic tracers for sediment fingerprinting in backwater confluences; we use fingerprinting results to evidence sediment dynamics controlling deposition patterns in confluences used for wetland and marina functions; and we quantify the spatial extent of tributary drainages with wetland and marina features in OR confluences. Both organic and inorganic tracers statistically differentiate sediment from stream and river end‐members. Carbon and nitrogen stable isotopes produce greater uncertainty in fingerprinting results than inorganic elemental tracers. Uncertainty analysis of the nonconservative tracer term in the organic matter fingerprinting application estimates an apparent enrichment of the carbon stable isotopes during instream residence, and the nonconservativeness is quantified with a statistical approach unique to the fingerprinting literature. Wetland and marina features in OR confluences impact 42% and 11% of tributary drainage areas, respectively. Sediment dynamics show wetland and marina confluences experience deposition from river backwaters with longitudinally linear and nonlinear patterns, respectively, from sediment sources.  相似文献   

11.
We investigate stream response to the La Valle Dam removal and channel reconstruction by estimating channel hydraulic parameter values and changes in sedimentation within the reservoir. The designed channel reconstruction after the dam removal included placement of a riffle structure at the former dam site. Stream surveys undertaken in 1984 by Federal Emergency Management Agency and in 2001 by Doyle et al. were supplemented with surveys in 2009 and 2011 to study the effects of the instream structure. We created a model in HEC‐RAS IV and surface maps in Surfer© using the 1984, 2009, and 2011 surveys. The HEC‐RAS IV model for 2009 channel conditions indicates that the riffle structure decreases upstream channel shear stress and velocity, causing renewed deposition of sediment within the former reservoir. We estimate by 2009, 61% of former reservoir sediments were removed during dam removal and channel reconstruction. Between 2009 and 2011 renewed sedimentation within the former reservoir represented approximately 7.85% of the original reservoir volume. The HEC‐RAS IV models show the largest impacts of the dam and riffle structure occur at flood magnitudes at or below bankfull. Thus, the riffle and the dam similarly alter channel hydraulics and sediment transport. As such, our models indicate that the La Valle Dam project was a dam replacement rather than a removal. Our results confirm that channel reconstruction method can alter channel hydraulics, geomorphology, and sediment mobility.  相似文献   

12.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

13.
In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. These analyses have been extended to include 75 small estuarine systems across the mid-Atlantic and southern New England regions of the USA. Because of the different characteristics and dynamics of the estuaries across these regions, adjustment for differing hydrology, sediment characteristics, and sediment origins were included in the analysis. Multiple linear regression with stepwise selection was used to develop statistical models for sediment metals, organics, and total polycyclic aromatic hydrocarbons (PAHs). The landscape metrics important for explaining the variation in sediment metals levels (R2 = 0.72) were the percent area of nonforested wetlands (negative contribution), percent area of urban land, and point source effluent volume and metals input (positive contributions). The metrics important for sediment organics levels (R2 = 0.5) and total PAHs (R2 = 0.46) were percent area of urban land (positive contribution) and percent area of nonforested wetlands (negative contribution). These models included silt-clay content (metals) or total organic C (organics, total PAHs) of sediments and grouping by estuarine hydrology, suggesting the importance of sediment characteristics and hydrology in mitigating the influence of the landscape metrics on sediment contamination levels. The overall results from this study are indicative of how statistical models can be developed relating landscape metrics to estuarine sediment contamination for distributions of land cover and point source discharges.  相似文献   

14.
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream‐discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use‐land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long‐term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.  相似文献   

15.
Accelerated erosion and increased sediment yields resulting from changes in land use are a critical environmental problem. Resource managers and decision makers need spatially explicit tools to help them predict the changes in sediment production and delivery due to unpaved roads and other types of land disturbance. This is a particularly important issue in much of the Caribbean because of the rapid pace of development and potential damage to nearshore coral reef communities. The specific objectives of this study were to: (1) develop a GIS-based sediment budget model; (2) use the model to evaluate the effects of unpaved roads on sediment delivery rates in three watersheds on St. John in the US Virgin Islands; and (3) compare the predicted sediment yields to pre-existing data. The St. John Erosion Model (STJ-EROS) is an ArcInfo-based program that uses empirical sediment production functions and delivery ratios to quantify watershed-scale sediment yields. The program consists of six input routines and five routines to calculate sediment production and delivery. The input routines have interfaces that allow the user to adjust the key variables that control sediment production and delivery. The other five routines use pre-set erosion rate constants, user-defined variables, and values from nine data layers to calculate watershed-scale sediment yields from unpaved road travelways, road cutslopes, streambanks, treethrow, and undisturbed hillslopes. STJ-EROS was applied to three basins on St. John with varying levels of development. Predicted sediment yields under natural conditions ranged from 2 to 7Mgkm(-2)yr(-1), while yield rates for current conditions ranged from 8 to 46Mgkm(-2)yr(-1). Unpaved roads are estimated to be increasing sediment delivery rates by 3-6 times for Lameshur Bay, 5-9 times for Fish Bay, and 4-8 times for Cinnamon Bay. Predicted basin-scale sediment yields for both undisturbed and current conditions are within the range of measured sediment yields and bay sedimentation rates. The structure and user interfaces in STJ-EROS mean that the model can be readily adapted to other areas and used to assess the impact of unpaved roads and other land uses sediment production and delivery.  相似文献   

16.
Continued alteration of the nitrogen cycle exposes receiving waters to elevated nitrogen concentrations and forces drinking water treatment services to plan for such increases in the future. We developed four 2011–2050 land cover change scenarios and modeled the impact of projected land cover change on influent water quality to support long-term planning for the Minneapolis Water Treatment Distribution Service (MWTDS) using Soil Water and Assessment Tool. Projected land cover changes based on relatively unconstrained economic growth led to substantial increases in total nitrogen (TN) loads and modest increases in total phosphorus (TP) loads in spring. Changes in sediment, TN, and TP under two “constrained” growth scenarios were near zero or declined modestly. Longitudinal analysis suggested that the extant vegetation along the Mississippi River corridor upstream of the MWTDS may be a sediment (and phosphorus) trap. Autoregressive analysis of current (2008–2017) chemical treatment application rates (mass per water volume processed) and extant (2001–2011) land cover change revealed that statistically significant increases in chemical treatment rates were temporally congruent with urbanization and conversion of pasture to cropland. Using the current trend in chemical treatment application rates and their inferred relationship to extant land cover change as a bellwether, the unconstrained growth scenarios suggest that future land cover may present challenges to the production of potable water for MWTDS.  相似文献   

17.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

18.
The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.  相似文献   

19.
Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus].  相似文献   

20.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号