首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
When river water quality fluctuates over relatively short periods of time with respect to the sampling frequency, the collection of grab samples may be inappropriate for characterising average water quality. This paper presents the results of a water quality monitoring study carried out on a stretch of the river Lambro (northern Italy) dominated by a periodically overloaded sewage treatment works (STW) located near its upstream end. Water quality was strongly influenced by a pronounced diurnal cycle in pollutant loads caused by the regular emission of untreated waste water during periods of high domestic flow (daytime). Two different sampling techniques were employed: grab sampling and 24-h composite sampling using automatic samplers. Samples were collected at the plant overflow and at several sites along the river and analysed for two common ingredients of household detergents, linear alkylbenzene sulphonate (LAS) and boron (B) and for routine water quality variables. The results obtained show that: (1) The diurnal variability of point-source-derived chemical concentrations in the river downstream of the undersized STW increased with increasing removal efficiency in sewage treatment. (2) The shape of the diurnal concentration signal remained relatively intact for a considerable distance downstream of the STW for several water quality variables, suggesting that hydrodynamic dispersion plays a relatively minor role in controlling concentration patterns in this river. (3) In-stream degradation of LAS was consistent with first order kinetics with a rate constant of 0.05-0.06 h(-1). (4) Grab sampling is a relatively inefficient methodology for capturing mean concentrations for rivers subjected to highly variable loads, especially when it is restricted to office hours. The inefficiency of grab sampling is more marked for substances (e.g. LAS) which are effectively removed during sewage treatment than for substances which are not. (5) For LAS, diurnal variability in the concentration signal decreases with distance downstream, making grab sampling an increasingly reliable methodology for estimating mean concentrations. (6) 24-h composite sampling is an efficient way of eliminating the effect of diurnal variations in load strength.  相似文献   

2.
Until recently, studies reporting the concentrations of polybrominated diphenyl ethers (PBDEs) as well as polybrominated biphenyls (PBBs) are generally scarce in the literature. Consequently, this study was aimed to investigate the occurrence and concentrations of certain PBDE congeners (BDE 28, 47, 100, 99, 154, 153, 183 and 209) and BB 153 in river water samples collected bi-monthly from the Diep River. The routine analyses of the target compounds were performed using a high-capillary GC–microelectron capture detection, while their structural elucidation was assessed using GC-TOF-MS technique. The overall mean concentrations of the sum of the eight PBDE congeners were 2.60, 4.83 and 4.29 ng/L for the upstream, point of discharge and downstream sampling points, respectively. Similarly, the overall mean concentrations of BB 153 were 0.25, 4.85 and 1.56 ng/L for the upstream, point of discharge and downstream sampling points, respectively. BDE 47 was the dominant congener found in these samples contributing between 19 and 26 % to the total PBDEs across the sampling points. The statistical analyses performed on the results obtained showed that all the congeners, except BDE 209 in certain instances, had strong positive correlations with one another, thus suggesting that these contaminants could be emanating from the same source. In this study, potential sources of these pollutants other than WWTP discharges into the investigated river were also identified. However, the relatively high concentrations of the target compounds found at the point of discharge sampling point coupled with the large volume of treated effluent being discharged suggested that the contributions from this source could be very significant over time.  相似文献   

3.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

4.
Multivariate statistical techniques, such as analysis of variance, cluster analysis (CA), correlation analysis, principal component analysis (PCA), and factor analysis (FA), were applied to determine the spatial and temporal variations of dissolved heavy metals in the Tigris River at 7 different sites spread over the river stretch of about 500 km during the period of February 2008 to January 2009. The results indicated that Fe, Cr, and Ni were the most abundant elements in the river water, whereas Cd and As were the less abundant. Cu, Fe, Ni, and Zn showed significant spatial variations, reflecting the influence of anthropogenic activities. The lowest total concentration of heavy metals was found at site 2 downstream of the Dicle Dam due to clean water from the dam. The concentrations of most metals were found lower when compared with results of previous studies due to reduction of the activity of the copper mine plant and the construction of two dams on the river. The lowest total concentrations were determined in February due to high precipitation and snow melts. Hierarchical agglomerative CA classified all the sampling sites into three main groups of spatial similarities. Clusters 1 (Maden and Bismil), 2 (Cizre), and 3 (E?il, Diyarbak?r, Batman, and Hasankeyf) corresponded to moderate polluted and relatively low polluted regions, respectively. PCA/FA, CA, and correlation analysis suggest that Cu, Ni, and Zn are controlled by anthropogenic sources.  相似文献   

5.
The impact of an industrial effluent containing high loads of calcium, cadmium, lead chloride and sulphate, on a river ecosystem was assessed using a combination of an effluent toxicity test, an ambient toxicity test and an ecological survey. Only this combination of techniques made it possible to discriminate between the effects of the discharge and those of the background pollution. Each of the individual techniques detected essential effects which the other failed to reveal. With the physical and chemical measurements, important increases of several components were measured at all sampling sites downstream of the discharge. With the ecological survey, however, no large changes in water quality could be determined at the sampling sites, due to the high degree of pollution present upstream of the discharge. Reproduction of Daphnia magna, exposed to sublethal effluent dilutions, was followed over two generations. The offspring of the first generation were shown to have an increased sensitivity to the effluent, compared to the first generation that was born from previously unexposed mothers. Besides the toxicity of the effluent, the acute and chronic toxicity of its main component, CaCl(2), was also determined. The results of the CaCl(2)-tests and toxicity data from literature for the suspected toxicants were transformed to Toxic Units (TU). Using the sum of the TUs we investigated the possibility of predicting effluent toxicity to Daphnia magna. Effluent toxicity was under-estimated by calculating the sum of the TUs of the individual components. Dilution of the effluent to a level at which the measured toxicant concentrations comply with European regulations still showed significant effects on Daphnia reproduction.  相似文献   

6.
Anderson Td  MacRae JD 《Chemosphere》2006,62(7):1153-1160
Polybrominated diphenyl ethers (PBDEs) are one class of flame retardants commonly used in textiles, foams and plastics. They are similar in behavior to the well-studied polychlorinated biphenyls and growing evidence suggests they are widespread global environmental pollutants that are capable of bioaccumulation. Fish tissue samples were collected from sites along the Penobscot River in central Maine. The total concentration of tetra- to hepta-PBDEs in these samples were calculated and generally increased from upstream to downstream locations ranging from 800 to 1810 ng/g lipid at the northernmost site to 5750-29000 ng/g at the downstream sampling site. BDE-47, 99 and 100 were the predominant congeners found in the fish tissue. Wastewater treatment plants (WWTPs) are one of the potential sources of these compounds to the environment through effluent discharge and landspreading of biosolids. Influent, effluent, activated sludge and dewatered biosolids were collected and analyzed for PBDE congeners from a WWTP at Orono, Maine. PBDE congeners were detectable in effluent samples at concentrations from 0.31 to 0.90 microg/l, in the activated sludge at 1.32-3.8 microg/l and in the influent at 4.2-4.3 microg/l, but the majority of the material was concentrated in the biosolids. Total concentration in the biosolids was 2320-3530 microg/kg dry weight.  相似文献   

7.
The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Nebraska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in estimated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in parallel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-dimethylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Methamphetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.  相似文献   

8.
To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations.  相似文献   

9.
This work aims at evaluating spatial distribution patterns of concentration variations for chlorinated solvents in groundwater, based on principal component analysis and geographic information system (GIS) tools. The study investigates long-time series of chlorinated solvent concentrations in groundwater measured for 18 contaminated industrial sites. The characterization of contaminant plumes and delineation of pollutant sources are essential for choosing appropriate monitoring and remediation strategies, as contaminated groundwaters are characterized by complex patterns of spatial and temporal concentration variability, with wide unpredictable fluctuations over time. The present work describes the results of a new exploratory statistical method called the Variability Index Method (VIM) applied to environmental data to assess the performance of using concentration variations as molecular tracers to reveal aquifer dynamics, industrial impacts, and point sources for contamination plumes. The application of this method provides a useful assessment of controls over contaminant concentration variations as well as support for remediation techniques.  相似文献   

10.
基于多元统计分析的渭河西咸段水质评价   总被引:1,自引:0,他引:1  
基于2012年旱季和雨季的水质监测数据,采用主成分分析(PCA)和绝对主成分多元线性回归分析(APCS-MLR)方法对渭河西咸段水体的污染特征进行了综合评价。结果表明,2012年渭河西咸段水体主要以有机污染和富营养化污染为主,同时存在一定的As污染。总体上,研究水体旱季比雨季污染严重,旱季和雨季提取的主成分及大部分断面综合排名不同,说明降雨对水质产生一定的影响。渭河西咸段水体在皂河入渭之前的上游污染相对较轻,污染贡献以干流排污为主;对应的下游水质较差,皂河是其最大的污染源。  相似文献   

11.
Fish, sediment and water samples from different places along the Spanish River Vero, a tributary of the Cinca River in the Ebro River basin, were collected in two different sampling campaigns, the first one during November 2004 and the second one in November 2005. The samples were collected up- and downstream from an industrial park. A total of 29 fishes, 6 sediments and 3 water samples were analyzed for polybrominated diphenyl ethers (PBDEs). Analytical work included 23 congeners, from tri- to deca-BDEs. The highest values for both sediment and fish samples were found downstream of the industrial park. High BDE-209 contamination was found in these sediment samples, with values up to 12 microg g(-1) dry weight. Moreover, BDE-209 was detected in 14 out of 15 biota samples collected downstream the industrial park, at concentration levels ranging from 20 to 707 ng g(-1) lipid weight, whereas it was not detected in samples collected upstream. These fish concentrations proved the bioavailability of BDE-209 and represented the highest deca-BDE values found in aquatic biota. The analysis of industrial effluents revealed that some industries contribute in some way to the BDE-209 contamination found in this area, but the industry focused on the polyamide polymerization is the main responsible.  相似文献   

12.
The environmental implications of mining activities are of worldwide concern. An environmental evaluation at the basin level was conducted because of widespread mining in Cajamarca in Northern Peru. A sediment monitoring program was developed at the Jequetepeque basin, located in Cajamarca. A total of 16 sites were monitored at three different times between June 2009 and July 2010, and a total of 42 samples were collected. All samples were analyzed by microwave digestion and by a sequential extraction scheme following the three-stage European Community Bureau of Reference (three-stage BCR) protocol. Trace element mobilization from the sediments to the water column was assessed by the risk assessment code (RAC). Spatial and temporal distribution of trace elements was evaluated by principal component analysis and hierarchical cluster analysis. Cd, Zn, As, and Pb showed the highest concentrations independent of season. Notably, Cu concentration and mobility increased during the wet season for all samples. Additionally, Hg concentration and mobility increased during the wet season near the mine sites. According to the enrichment factor, the highest enrichments of Cd, Zn, Pb, and As were related to mine runoff. The effect of trace elements near the mine sites at the Jequetepeque basin was considered a significant threat to the environment due to Cd, Zn, Pb, and As, and the concentrations of Cu and Hg were also considered a concern. This work establishes a baseline for the environmental quality status of the Jequetepeque basin that may support water quality management in Peru.  相似文献   

13.
The behavior of pharmaceutical compounds in aquatic ecosystems is not well defined. In order to determine spatial and temporal variations in concentrations of pharmaceuticals in the Tennessee River, water samples were collected from multiple points along the river and at the inflow of major tributaries. Sampling structure was designed to investigate trends between surface and subsurface samples, seasonal trends (winter, spring, summer, and fall), the direct influence of sewage treatment plants (upstream versus downstream), and the effect of downstream distance on pharmaceutical concentrations. All samples were quantified via solid phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This method yielded reproducible quantitation at low parts per trillion (ng L(-1)) levels for all 14 analytes (acetaminophen, atorvastatin, caffeine, carbamazepine, ciprofloxacin, diltiazem, fluoxetine, levofloxacin, lovastatin, norfluoxetine, ranitidine, sertraline, sulfamethoxazole, and trimethoprim). Correlation analyses (depth, distance) and repeated-measures ANOVAs (season, sewage treatment plant proximity) were used to determine statistically significant trends for frequently detected pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole). Caffeine and sulfamethoxazole were found to vary by season in subsurface samples; spring exhibited the highest concentrations. Carbamazepine varied in proximity to sewage treatment plant outfall with subsurface samples yielding greater concentrations downstream than upstream. In addition, individual pharmaceuticals displayed positive correlation between surface and subsurface samples and negative correlation with downstream distance from the headwaters.  相似文献   

14.
Sediments were collected from a stream (upstream, outfall and downstream) receiving copper laden catfish pond effluent to assess toxicity to non-target biota. No significant reduction in Hyalella azteca survival or growth (10 d), or Typha latifolia germination and root and shoot growth (7 d) were observed after exposure to upstream and outfall sediments. A significant reduction in H. azteca survival was observed after exposure to the downstream sediment sample; however, no reduction in T. latifolia germination or seedling growth was detected. Bulk sediment copper concentrations in the upstream, outfall and downstream samples were 29, 31, and 25 mg Cu/kg dry weight, respectively. Interstitial water (IW) concentrations ranged from 0.053 to 0.14 mg Cu/l with 10 d IW toxicity units > or = 0.7. Outfall samples were amended with additional concentrations of copper sulfate so that bulk sediment measured concentrations in the amended samples were 172, 663, 1245, and 1515 mg Cu/kg dry weight. Survival was the most sensitive endpoint examined with respect to H. azteca with a no observed effects concentration (NOEC) and lowest observed effects concentration (LOEC) of 1245 and 1515 mg Cu/kg, respectively. NOEC and LOEC for T. latifolia root growth were 663 and 1245 mg Cu/kg, respectively. IW copper concentrations were > or = 0.86 mg Cu/l with H. azteca intersitial water toxicity unit (IWTU) concentrations > or = 1.2. Sequential extraction qualitatively revealed the carbonate and iron oxide fractions which accounted for a majority of the copper binding. In this instance, the copper which was applied to catfish ponds does not appear to be adversely impacting the receiving stream system.  相似文献   

15.
为分析研究不同污水厂出水及下游排污河磷形态及浓度的变化规律,2014年3-8月对污水厂A、B出水及其排污河下游与大沽排污河5个点位水体中的总磷(TP)、溶解性总磷(TDP)、溶解性无机磷(DIP)、溶解性有机磷(DOP)、颗粒态磷(PP)进行了动态监测。结果表明,各点位水体均以DIP为主,污水厂A出水TP变化范围为0.27~2.31 mg/L,均值为1.04 mg/L,下游各形态磷浓度低于出水浓度,污水厂B出水TP浓度范围为0.10~3.12 mg/L,均值为0.49 mg/L,下游各形态磷浓度除DOP外均高于出水浓度。大沽排污河的总磷浓度变化范围为0.60~6.26 mg/L,均值为1.82 mg/L。其他外源磷输入对大沽排污河磷形态及浓度影响大于污水厂。  相似文献   

16.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   

17.
Use of cyanobacteria to assess water quality in running waters   总被引:4,自引:0,他引:4  
Epilithic cyanobacterial communities in rivers in the province of Madrid (Spain) and their relationship with water quality were studied. Sampling locations above and below outlets for sewage effluent and other wastes from human settlements were selected. We aimed to evaluate the use of cyanobacteria as potential indicators of pollution in running waters. Large increases in nutrient concentrations were always observed at downstream sampling sites. A decrease in species richness and the Margalef diversity index were associated with these increases in nutrient load. Differences in cyanobacterial community structure were also observed. A higher proportion of cyanobacteria belonging to the Oscillatoriales order predominated at sampling sites with higher nutrient content. However, Nostocales species were more abundant at upstream sites characterized by lower nutrient load than at downstream locations. The soluble reactive phosphate (SRP) had a threshold effect on cyanobacterial biomass: a decrease in phycobiliprotein content as SRP increased, reaching a minimum, followed by an increase in abundance. This increase may be attributed to hypertrophic conditions in those locations. Our results and literature data confirm the suitability of this phototroph community for monitoring eutrophication in rivers  相似文献   

18.
Ko FC  Baker J  Fang MD  Lee CL 《Chemosphere》2007,66(2):277-285
Polycyclic aromatic hydrocarbon (PAH) concentrations in 34 surface sediments along the Susquehanna River were investigated in 2000. The total concentrations of PAHs in the surface sediments of Lake Clarke, Lake Aldred, the upper Conowingo Reservoir, and the lower Conowingo Reservoir were 3.3+/-1.5 microg g-1 (n=9), 1.6+/-1.3 microg g-1 (n=4), 9.8+/-5.5 microg g-1 (n=7), and 4.0+/-1.2 microg g-1 (n=14), respectively. These represent the first comprehensive measurement of PAHs in Susquehanna River surface sediments. Overall, total PAH concentrations were relatively lower in Lake Aldred, which is more shallow and sloped, and significantly higher in the upper Conowingo Reservoir. The sediment PAH levels were related to river flow rates, which are indirectly correlated with the particle size of the surface sediments. Total PAH levels in all the studied sites were below the effects range median (ERM) of 44.8 microg g-1 with 38% (13 of the 34 sampling sites) exceeding the effects range low (ERL) of 4.02 microg g-1. Principal component analysis indicated that variations in the PAH compound patterns of each reservoir decreased from upstream to downstream, indicating that the surface sediments were mixed along the Susquehanna River. The PAH patterns in the lower Conowingo Reservoir sediments were a combination of those upstream sources. Source analysis using isomer ratios as indicators suggested that PAHs in the Susquehanna River surface sediment are derived from the combustion of fossil fuels such as coal and gasoline with coal as the major source of contaminants.  相似文献   

19.
Statistical assessment of water quality data, obtained at the South Florida Water Management District (West Palm Beach, Florida) S-65E structure, illustrated significant differences and inconsistency in nutrient concentrations (Daas and Ebadian, 2003). The evaluation showed that currently used water sampling techniques are inadequate because of deficiencies in functionality and sensitivity to flow conditions at the structure. Moreover, the study indicated the need for a more precise sampling technology, which would consider variations in the velocity profile across the water column during the sampling process. Therefore, a new prototype sampling technology was designed and tested in a pilot open channel. The new sampler had the capability to collect discrete aliquot volumes of water samples that are proportional to the corresponding point velocity at each of these depths. The discrete aliquot volumes were blended to provide an integrated sample that captures the variations in the velocity profile.  相似文献   

20.
The performance of various algal indices to document improvements in water quality across a low nutrient concentration gradient was assessed during 2 years in the St Lawrence River (Quebec, Canada). Water-quality variables and periphyton samples were collected on navigational buoys near Montreal during the spring, summer and fall of 1994 and 1995. Exposure to urban wastewater varied widely within the sector surrounding the island of Montreal, with some areas upstream receiving no direct effluents and areas further downstream receiving treated and untreated wastewater. Faecal coliform concentrations provided a good tracer of effluents and were significantly correlated to nutrient concentrations (r = 0.33-0.72, p < 0.001) and water transparency (r = 0.70, p < 0.001). Despite a strong gradient in faecal coliform concentration (< 2 to > 20 000 UFC/100 ml), algal biomass and diversity did not reflect differences between sites with varying levels of urban wastewater. Taxonomic composition of periphyton communities, particularly the presence of the cyanophyte Plectonema notatum Schmidle, was related (r = 0.48, p = 0.004) to exposure to urban effluents. Variables describing seasonal changes (temperature, Julian day, river discharge, conductivity, NO2-NO3) explained a large fraction of total variance (38-52% of total variance) and thus exerted the predominant influence on algal biomass and species composition in the St Lawrence River. Variables describing the presence of effluents explained 1-22% of the variance in compositional data. Subtle changes in periphyton species composition were the only response to different levels of exposure to urban wastewater in the Montreal area, which represented relatively small differences in comparison to natural seasonal variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号