首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
铊的环境地球化学研究进展   总被引:1,自引:0,他引:1  
铊(Tl)作为一种高毒害性的元素越来越受到人们的关注。大量含Tl矿物的开采和冶炼、化石燃料的燃烧等人类活动,导致Tl及其化合物进入环境,进而通过食物链进入生物体,从而对动植物特别是人类健康造成严重的危害。文章对铊在各环境介质中的存在、迁移、转化,以及Tl的生物效应研究进展进行了概述。Tl在岩石中的平均质量分数为0.5~10 mg.kg-1,在大气中的平均质量浓度为0.22~1.0 ng.m-3,在天然水体中的平均质量浓度为0.001~1.264μg.L-1,在土壤中的平均质量分数为0.01~3.0 mg.kg-1,在植物中的平均质量分数为0.02~0.25 mg.kg-1。大气中的铊可随大气迁移,导致全球Tl污染;土壤中Tl的迁移主要受pH影响,pH越小其迁移能力越强,而水中溶解态的铊迁移能力最强。植物对Tl具有较强的富集能力,而动物实验则表明Tl具有一定的致畸性,可能存在一定的致癌性,并且职业暴露是人体Tl中毒的主要原因。尽管有关有Tl的地球化学以及生态毒理学方面的研究取得了一定的进展,但有关Tl在环境介质之间的界面化学机理、Tl在分子水平上吸附机理、不同形态的Tl在生物体中的致毒代谢机理以及铊的同位素在环境介质中的变化等方面仍有待于进一步的研究。  相似文献   

2.
铊在土壤-植物系统中的迁移积累   总被引:1,自引:0,他引:1  
铊(Tl)是分散、稀有重金属,是典型的毒害元素.由于含Tl资源的开发及利用过程中向环境排放大量的Tl,造成了严重的区域性Tl污染,土壤中的Tl可被植物(尤其是粮食作物)富集,并可通过食物链进入人体发生累积,对人类造成重大危害.本文对土壤-植物系统的Tl污染和作物富集的研究现状进行了综述,重点阐述了土壤中Tl污染的形态、分布状况,不同植物对土壤中Tl的富集特点和规律,Tl(超)富集植物累积机制及植物Tl中毒机制,为Tl污染土壤的治理和预防提供了依据.  相似文献   

3.
赵悦鑫  程方  门彬  何怡  王东升 《环境化学》2019,38(9):2047-2054
铊(Tl)是世界上公认的13种优先控制的金属污染物之一.金属冶炼以及煤炭燃烧等工业活动是Tl污染物进入环境介质的主要原因.本文分别介绍了Tl在水环境中的分布特征和赋存形态,及矿(岩)石、天然有机物、水生生物对Tl的赋存形态和归趋的影响,分析了当前Tl污染界面化学研究的重点和难点,为今后研究Tl的水-沉积物界面过程提供参考.  相似文献   

4.
蚕豆根尖微核技术研究水体中铊的遗传毒性   总被引:6,自引:0,他引:6  
铊(Tl)是剧毒的重金属元素.含铊矿产资源在开发利用过程中会释放铊,对生态环境和人体健康造成威胁.目前我国尚缺乏水环境中铊的安全标准.文章利用蚕豆根尖微核技术(Vicia faba-root tip cells micronucleus test)研究水体中铊的遗传毒性,为生态安全评价提供理论依据.结果表明:水体中铊含量在0~3 μg·L-1范围内,随铊含量的增加,蚕豆根尖微核率和污染指数逐渐加大.当铊含量为2.0、3.0 μg·L-1时,微核率分别为22.69‰和51.51‰,与空白对照差异极显著(P<0.01),而且污染指数分别为3.80和8.63;铊对蚕豆根尖细胞分裂的作用规律不明显,在铊含量为0.3 μg·L-1时,蚕豆根尖细胞分裂受到显著抑制(P<0.05),但随铊含量的增加,根尖细胞分裂并无显著影响.根据统计结果及污染指数,初步确定水体中铊含量1.0 μg·L-1为安全含量,铊含量在2.0 μg·L-1以上时为重度污染.  相似文献   

5.
水中铊的污染及其生态效应   总被引:3,自引:0,他引:3  
邓红梅  陈永亨 《环境化学》2008,27(3):363-367
在天然水体中,铊(Tl)含量较低;然而在硫化物矿区,Tl的含量却急剧升高.在未受污染的陆地沉积物中Tl的含量较低;已受污染的陆地沉积物中Tl的含量相对较高,高出背景值数倍;在海洋沉积物中, Tl的含量尤以深海锰结核中最高.Tl可以在不同地理水域的生物体中富集, Tl在鱼和小虾肝脏中的含量高于肌肉和头骨,但是在肌肉和头骨中Tl的含量没有明显区别.Tl在天然水体中主要以Tl 形式存在.在较强的氧化环境中, Tl 能够氧化成Tl3 形成Tl(OH)3沉淀,Tl可以通过饮用水和食物链进入人体,其中Tl在人体的酶化反应过程中可以置换K ,并与酶产生很强的亲和力,从而诱发Tl的毒害效应.Tl对水生生物的毒性随生物的物种和生命期而变化.Tl对金属采矿、冶炼厂和水泥厂等污染源的水域内水生生物有害.活性铝净化法、离子交换法和NaCl溶液可以用来去除饮用水中的Tl.海绵吸附体MnO2(固)等吸附剂、氧化剂和碱性物质(如石灰等)可降低Tl的活动性,用来处理已被Tl污染的水体.  相似文献   

6.
选用云浮含铊硫铁矿周围冲积土壤为供试样品,在土样中投加不同比例腐殖酸,采用连续浸提法对比研究了外源腐殖酸对受铊污染土中的铊不同形态及活性的影响.结果表明:随腐殖酸投入比的加大,酸可交换态含量明显下降,Fe/Mn氧化物结合态反之,有机质结合态与Fe/Mn氧化物结合态雷同,残余态几乎无变化;腐殖酸对酸可交换态铊分配比率最高为13.6%~30.5%,分别是有机态铊和Fe/Mn氧化态铊的2.8~15.1倍和2.8~3.7倍.结果说明腐殖酸有降低冲积土壤上有害活动态铊的功能,其作用机制在于腐殖酸具备的络合(螯合)能力和胶体特性.研究确认,腐殖酸可作为土壤重金属污染修复的优质材料.  相似文献   

7.
水体中铊对泥鳅外周血红细胞的遗传毒性   总被引:2,自引:1,他引:2  
铊(T1)是剧毒的重金属元素.含铊矿产资源在开发利用过程中会释放铊,对生态环境和人体健康造成威胁.目前我国尚缺乏水环境中铊的安全标准.利用泥鳅Misgurnus anguillicaudatus红细胞微核技术研究水体中铊的遗传毒性.结果表明:水体中铊含量在0~1 μg·L-1范围内,随铊质量浓度的增加,泥鳅红细胞产生微核以及核突起、凹陷等各种核异常现象;微核率、核异常率及核空泡率等3项指标随铊质量浓度升高而升高,且呈显著或极显著正相关.这3项指标作为铊胁迫下泥鳅红细胞毒害程度的依据具有可行性.当水体铊质量浓度为0.3 μg·L-1时,微核率、核异常率及核空泡率均极显著高于对照.将铊质量浓度0.3 μg·L-1作为泥鳅红细胞发生突变的阈值.  相似文献   

8.
为了研究广州大学城湾咀头湿地公园(D)和南沙湿地公园(N)表层沉积物对典型重金属铊(Tl)和镉(Cd)吸附性能的研究,采用静态批处理实验,探讨了pH、沉积物中有机质含量、反应时间、Tl(Ⅰ)和Cd(Ⅱ)的初始浓度、温度等因素对吸附的影响.结果表明,溶液初始浓度为10 mg·L~(-1),随溶液初始pH值的升高,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附量增大,在pH 3.0—9.0时,沉积物D和N对Tl(Ⅰ)均达到较大的吸附量,分别为159.5 mg·kg~(-1)和156.7 mg·kg~(-1);在pH值为2.0—6.0时,对Cd(Ⅱ)的吸附急剧增大,沉积物D的吸附量达到了220.1 mg·kg~(-1),沉积物N的值则达到247.8 mg·kg~(-1),当pH6.0时,吸附量呈下降趋势;沉积物中的有机质对Cd(Ⅱ)的吸附有显著影响,对Tl(Ⅰ)吸附影响程度小于Cd(Ⅱ).动力学实验显示,沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附过程迅速,分别在4 h和1 h达到平衡;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附与准二级动力学拟合程度高(R20.99),由此可知该吸附过程为化学吸附.等温吸附实验表明,随Tl(Ⅰ)和Cd(Ⅱ)初始浓度增加,沉积物的吸附量也随之上升,当温度升高时,沉积物对Cd(Ⅱ)的吸附量增大,对Tl(Ⅰ)的吸附效果则相反;沉积物对Tl(Ⅰ)和Cd(Ⅱ)的吸附效果用Langmuir和Freundlich方程拟合均较好.  相似文献   

9.
针对湖南湘江流域含铊工业废水大量排放,引起部分河段地表水铊含量超标的问题,通过对河流相应集水区各涉铊污染源进行调查分析,计算铊污染物入河量,选择模型,按水功能区划要求的水质目标,估算出目标河段铊污染物的水环境容量,并按容量总量管理模式,提出各地区、各污染源铊污染物排放与削减的分配方案.结果显示,湘江干流永州、郴州、衡阳和娄底段尚有一定的环境容量,而株洲、湘潭、长沙和岳阳段容量计算结果为负值,表明该河段铊污染物含量已超过水环境容量;除汨罗江外,湘江一级支流均有剩余的铊环境容量,容量较大的是耒水,其次是洣水和舂陵水;10条涉及铊排放的二级支流,都还有剩余环境容量,容量最多的是西河,其次是永乐江和攸水.铊排放超出环境容量的区域,须进行铊污染物削减,需要削减的地市有永州、衡阳、湘潭、长沙和岳阳,需要削减的行业涉及化工、有色、钢铁、锰业和玻璃行业,削减总量达到每年3.188 t.化工行业排放最大,为每年3.239 t,需要削减的量也最大,为每年2.862 t,占削减总量的89.8%.  相似文献   

10.
水体、土壤和沉积物中铊的化学形态研究进展   总被引:1,自引:0,他引:1  
铊(TI)是一个典型性的毒害重金属元素,在环境中的迁移转化行为、富集机制、毒性和生物效应与其赋存化学形态密切相关.本文对水体、土壤和沉积物中Tl化学形态分布、演化特征和化学形态分析方法作了系统总结和评述,并对Tl化学形态分析存在问题及未来发展趋势进行了展望.  相似文献   

11.
云浮黄铁矿废渣中铊的模拟淋滤试验   总被引:14,自引:0,他引:14  
本文模拟广东地区酸雨的几种要素,分别对粤西云黄铁硫酸厂两种类型、两种粒径的废渣进行淋滤试验,考察废渣中的铊的释放规律,结果表明:粒径0.5-0.25mm的炉底渣和沉灰渣分别在PH.11和PH4.02的硫酸介质中,铊的释放率最高。铊的释放率,滤出液的PH值与淋滤介质的PH值和离子强度密切相关。  相似文献   

12.
铊(T1)是剧毒的重金属元素,会对生态环境和人体健康造成威胁.目前各国铊的环境安全标准存在差异.本文利用泥鳅红细胞微核技术,研究泥鳅Misgurnus anguillicaudatus红细胞微核率和核异常率与铊污染时间的关系,为该技术在铊毒理研究中的可行性和铊环境安全标准提供依据.结果表明:水体铊质量浓度为0.5μg·L~(-1)下,随处理时间的延长,泥鳅红细胞微核率、核异常率显著增加,并与时间呈显著的正相关,其中微核率、核异常率分别在处理24 h和48 h时达到最大值;随后两指标逐步下降,与时间呈显著的负相关.在此铊质量浓度和处理时间内,核异常率与微核率均显著高于空白无铊对照处理,表明水体铊质量浓度0.5 μg·L~(-1)对泥鳅血红细胞具有遗传毒性.  相似文献   

13.
The control and inhibition of pyrite bioleaching involved in the generation of acid mine drainage was studied. Inhibition of pyrite bioleaching was performed by varying the pyrite concentration in the medium (substrate inhibition) and/or by addition of limestone (inhibition by pH increase) and olive pomace (inhibition by organic compounds). Inhibition tests of pyrite bioleaching were performed according to a full factorial design with three factors (pyrite, limestone and olive pomace) taken at two levels. Preliminary pyrite bioleaching tests showed the ability of the available inoculum to oxidise the mineral. Subsequently, experimental data for total soluble iron denoted strong inhibition under all the different operating conditions of the factorial design, except when larger pyrite concentrations were used. In particular, inhibition by limestone was due to the increase in pH which negatively affects microorganisms, while inhibition by olive pomace may be related to the antioxidant properties of polyphenols. Interactions among operating conditions were specifically assessed by analysis of variance. Only limestone and/or pomace addition resulted in a significant (95%) diminution of iron extraction.  相似文献   

14.
Thallium in the Environment and Health Effects   总被引:10,自引:0,他引:10  
Thallium is present in the natural environment in low concentration, being found most frequently in the sulphide ores of a number of heavy metals. Atmospheric emission and deposition from industrial sources has resulted in raised levels in the vicinity of mineral smelters, coal burning power plants, brick works and cement plants. In contaminated areas, raised levels are found in vegetables, fruit and in farm animals. Thallium is used industrially in small quantities, with uses in electronics, in the production of certain glasses and crystals and in medical diagnostics. It has in the past been commonly used as a rodenticide, but its use has now been banned in many countries. Thallium salts are now considered to be amongst the most toxic compounds known. With regard to population exposure, an epidemiological study in an area with high thallium concentrations in soil and garden vegetables centred on a cement plant, has found evidence of a dose response relationship between thallium concentration in urine and a number of non-specific subjective symptoms. Much further research is required to investigate the possible adverse health effects of thallium following population exposure.  相似文献   

15.
Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km(2) area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija. Mercury concentrations in attic dust are higher than in surrounding soils and the attic dust/soil ratio changes with distance. Measurements of mercury in the air confirmed widespread dispersion of mercury and showed highly elevated mercury concentrations around roasting plant and mine ventilation shaft. Beside, systematic monitoring of mercury contents in the stream sediments has demonstrated that huge amounts of mercury are stored in areas where ancient overbank sediments were deposited, and there was no decrease in mercury concentration in active sediments during the last 15 years. Recently, interesting and extremely polluted locations of historical small-scale roasting sites in the Idrija surroundings were discovered. Ongoing geochemical study aims to determine the extreme pollution and significance of these sites for wider contamination of soils and aquatic systems. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional environment including the aquatic systems in the Gulf of Trieste, which is seen as the final sink of a major part of the Hg stored in soils and river sediments in the Idrija area.  相似文献   

16.

Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km2 area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija. Mercury concentrations in attic dust are higher than in surrounding soils and the attic dust/soil ratio changes with distance. Measurements of mercury in the air confirmed widespread dispersion of mercury and showed highly elevated mercury concentrations around roasting plant and mine ventilation shaft. Beside, systematic monitoring of mercury contents in the stream sediments has demonstrated that huge amounts of mercury are stored in areas where ancient overbank sediments were deposited, and there was no decrease in mercury concentration in active sediments during the last 15 years. Recently, interesting and extremely polluted locations of historical small-scale roasting sites in the Idrija surroundings were discovered. Ongoing geochemical study aims to determine the extreme pollution and significance of these sites for wider contamination of soils and aquatic systems. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional environment including the aquatic systems in the Gulf of Trieste, which is seen as the final sink of a major part of the Hg stored in soils and river sediments in the Idrija area.

  相似文献   

17.
Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km2 area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija. Mercury concentrations in attic dust are higher than in surrounding soils and the attic dust/soil ratio changes with distance. Measurements of mercury in the air confirmed widespread dispersion of mercury and showed highly elevated mercury concentrations around roasting plant and mine ventilation shaft. Beside, systematic monitoring of mercury contents in the stream sediments has demonstrated that huge amounts of mercury are stored in areas where ancient overbank sediments were deposited, and there was no decrease in mercury concentration in active sediments during the last 15 years. Recently, interesting and extremely polluted locations of historical small-scale roasting sites in the Idrija surroundings were discovered. Ongoing geochemical study aims to determine the extreme pollution and significance of these sites for wider contamination of soils and aquatic systems. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional environment including the aquatic systems in the Gulf of Trieste, which is seen as the final sink of a major part of the Hg stored in soils and river sediments in the Idrija area.  相似文献   

18.
Thallium is a non-essential metal with a wide range of industrial uses. However, thallium is also a potential pollutant with high potential toxicity to humans. In the present study, we analyzed and compared the cellular and genotoxic effects of thallium in two main oxidation states by applying chromosome aberration assays to human peripheral lymphocytes. We observed that thallium(I) sulfate reduced the mitotic index at all tested concentrations (0.5, 1, 5, 50 and 100 μg/mL), whereas thallium(III) chloride was toxic at concentrations ≥1 μg/mL. Thallium(I) and thallium(III) treatment significantly increased structural chromosomal aberrations, with and without gaps, and increased the percentage of aberrant cells without gaps. Furthermore, satellite associations and numerical chromosomal aberration tests showed significant differences at a few of the tested concentrations. The satellite association test is related to aneuploidy. Thallium salts increased satellite associations when hyperploid cells were observed. Our results indicated that the two oxidation states of thallium induced toxicity in vitro – i.e. cyto/genotoxic (clastogenic and aneuploidogenic) effects.  相似文献   

19.
The origin of coal worker's pneumoconiosis (CWP) has been long debated. A recent epidemiological study shows a correlation between what is essentially the concentration of pyrite within coal and the prevalence of CWP in miners. Hydrogen peroxide and hydroxyl radical, both reactive oxygen species (ROS), form as byproducts of pyrite oxidative dissolution in air-saturated water. Motivated by the possible importance of ROS in the pathogenesis of CWP, we conducted an experimental study to evaluate if ROS form as byproducts in the oxidative dissolution of pyrite in simulated lung fluid (SLF) under biologically applicable conditions and to determine the persistence of pyrite in SLF. While the rate of pyrite oxidative dissolution in SLF is suppressed by 51% when compared to that in air-saturated water, the initial amount of hydrogen peroxide formed as a byproduct in SLF is nearly doubled. Hydroxyl radical is also formed in the experiments with SLF, but at lower concentrations than in the experiments with water. The formation of these ROS indicates that the reaction mechanism for pyrite oxidative dissolution in SLF is no different from that in water. The elevated hydrogen peroxide concentration in SLF suggests that the decomposition, via the Fenton mechanism to hydroxyl radical or with Fe(III) to form water and molecular oxygen, is initially inhibited by the presence of SLF components. On the basis of the oxidative dissolution rate of pyrite measured in this paper, it is calculated that a respirable two micron pyrite particle will take over 3?years to dissolve completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号