共查询到20条相似文献,搜索用时 62 毫秒
1.
复合型生物絮凝剂成分分析及其絮凝机理的研究 总被引:45,自引:3,他引:45
蒽酮反应、考马斯亮蓝、紫外扫描等测定结果表明,絮凝剂CBF的主要成分为多糖类物质.红外光谱扫描分析CBF中含有羧基,分别以-COO^-和COOH的形式存在.用凝胶色谱柱测其相对分子量为10^5-10^6.Zeta(ζ)电位测定及氢键和离子键检验结果表明,CBF与高岭土等无机颗粒之间的作用力为离子键,絮凝过程中存在架桥作用.利用原子力显微镜观察其絮凝形态发现絮体结构密实,有利于絮体沉降.其絮凝机理为絮凝剂和高岭土以离子键的形式结合,之后通过架桥作用絮凝沉淀. 相似文献
2.
多粘类芽孢杆菌GA1所产絮凝剂的絮凝性能研究及机理探讨 总被引:12,自引:0,他引:12
采用正交絮凝、粒度检测及电镜扫描考察了多粘类芽孢杆菌GA1所产絮凝剂(MBFGA1)对高岭土溶液、土壤悬浊液、洗煤废水及垃圾渗滤液4种废水的絮凝性能,并利用蒽酮试验和红外光谱对絮凝剂成分进行了初步鉴定.在正交絮凝实验获得的最佳絮凝条件下,絮凝剂对高岭土溶液、土壤悬浊液、洗煤废水和垃圾渗滤液的絮凝率分别高达99.53%、99.50%、98.2%和75.60%,絮体沉降速度分别为0.03 m/s、0.025 m/s、0.025 m/s和0.005 m/s;土壤悬浊液中颗粒絮凝后平均粒径增大且大于10 μm,其余3种废水中颗粒平均粒径减小且小于10 μm;电镜扫描结果显示,絮凝前后废水颗粒的形态均从棱角分明转变为包埋的无棱角;EDTA、HCl以及尿素检验发现4种颗粒与絮凝剂分子间靠离子键结合;蒽酮反应及红外光谱结果显示该絮凝剂为含有较多羟基及羧基等官能团的多糖大分子.实验结果表明絮凝剂对高颗粒物浓度废水有很好的处理效果,其絮凝机理主要是吸附架桥作用. 相似文献
3.
微生物絮凝剂MBFTRJ21的絮凝机理 总被引:24,自引:3,他引:24
筛选得到的乳酸杆菌属(Lactobacillus)具有用量少絮凝效果好等优点.蒽酮反应、考玛斯亮蓝、Elson-Morgan反应表明,絮凝剂MBFTRJ21为粘多糖类高分子絮凝剂;ξ电位测定及氢键和离子键检验结果表明,絮凝剂和碱泥之间的作用力为氢键;絮凝剂的热处理和KIO4处理表明,其活性成分为蛋白质和糖胺;絮凝过程中粒度分析表明,絮凝过程存在架桥作用.其絮凝机理为:絮凝剂和碱泥在絮凝剂的活性部位--糖胺中的氨基以氢键的形式结合,然后再经过架桥作用絮凝沉淀. 相似文献
4.
以城市污水处理厂的剩余活性污泥为原料,以稀盐酸为提取剂制备了污泥絮凝剂,并优化了污泥絮凝剂的制备方法及絮凝条件。当稀盐酸浓度为1. 2 mol/L,破解时间为20 min时,制得的絮凝剂对高岭土悬浮液的絮凝率可达到99. 5%。对于30 g污泥,提取剂稀盐酸的用量为200 m L,浓度为1. 2 mol/L时,连续提取2次,主要絮凝活性成分可基本提取出来。采用加碱溶液的方法对污泥絮凝剂进行提纯,制备得到纯化的絮凝剂PSF-1~3。当絮凝体系pH在4. 0~12. 0时,纯化絮凝剂对高岭土悬浮液的絮凝率均在95%以上。采用红外光谱对3个提纯絮凝剂进行结构解析,结果表明:纯化的污泥絮凝剂中存在O—H和N—H或二者之一,且存及酰胺键,推测絮凝剂的主要絮凝活性成分为多糖和蛋白质。采用扫描电镜对絮凝剂絮凝前后的形貌进行检测,絮凝后高岭土颗粒团聚在絮凝剂周围,由此推测在高岭土和絮凝剂之间产生吸附架桥作用。 相似文献
5.
微生物絮凝剂MBFGA1的结构鉴定及絮凝机理研究 总被引:3,自引:0,他引:3
以对高岭土的絮凝率为指标对GA1发酵液中各组分的絮凝活性进行预分析,确定MBFGA1精产品为该絮凝剂的核心有效成分.通过丙酮沉淀法提取MBFGA1粗产品,经Sevage试剂纯化后得到MBFGA1精产品,采用全波长扫描、苯酚-硫酸法及考马斯亮蓝法鉴定精产品为多糖类物质,并经2次凝胶过滤层析分离获得MBFGA1-1和MBFGA1-2两组分;分别使用电镜(ESEM)、红外光谱(FTIR)、高效液相色谱(HPLC)以及气相色谱(GC)对MBFGA1、MBFGA1-1和MBFGA1-2进行检测分析.结果显示MBFGA1为线性长链状分子结构,多糖主链上单糖间的连接主要为α-型糖苷键,含有羟基,羧基,甲氧基等有利于絮凝的基团;高效液相色谱和气相色谱测定MBFGA1-1分子量为1.18′106D,单糖组成为0.3木糖:1甘露糖:1.09葡萄糖,另含有少量鼠李糖;MBFGA1-2分子量为3.08′103D,单糖组成为0.68鼠李糖:0.28木糖:1.82甘露糖:1半乳糖:3.73葡萄糖.根据分析结果推测絮凝机理主要为吸附架桥,其中MBFGA1的大分子量以及所含的极性基团使得絮凝剂长链结构分子能够充分伸展,较好地发挥吸附架桥作用. 相似文献
6.
研究了间歇投加微生物絮凝剂MBF21和阳离子PAM对厌氧污泥颗粒化的作用规律在此基础上考察了污泥的比生物絮凝因子与厌氧污泥的粒径间的关系.研究表明,污泥的比生物絮凝因子与污泥的粒径呈正相关微生物絮凝剂组、阳离子PAM组及对照组中厌氧污泥的比生物絮凝因子BF/BF0分别增加至42.65、40.45、21.89;与对照组相比,微生物絮凝剂组和阳离子PAM组污泥的BF/BF0分别提高了94.8%和84.8%.相应的污泥平均粒径分别增加至1.04、1.13、0.63mm;与对照组相比,微生物絮凝剂组和阳离子PAM组的污泥平均粒径分别增加了65.1%和79.4%. 相似文献
7.
8.
采取PAC+絮凝剂的复配方式开展高岭土悬浊液烧杯实验,考察了复合生物絮凝剂CBF-1、CBF-1溶解物及微生物絮凝剂MBF8的絮凝特性,并借助iPDA仪分析和扫描电镜、光学显微镜观察等手段,比较分析了絮凝过程及絮体特性的差异.结果表明,各复配絮凝的浊度去除效果排序为CBF-1> CBF-1溶解物>MBF8,CBF-1投加量1 mg·L-1时,浊度去除率可达到97.5%;絮体强度排序为CBF-1> CBF-1溶解物>MBF8,絮体恢复因子排序为MBF8>CBF-1溶解物>CBF-1,絮体大小排序为CBF-1> CBF-1溶解物>MBF8.单独投加PAC或投加PAC+MBF8的情况下,形成的絮体形态相对规整、密实;投加PAC+ CBF-1溶解物或投加PAC+ CBF-1形成的絮体则相对无序、疏松,CBF-1作用下絮体大、沉降快.CBF-1中高电荷MBF8组分及大分子羧甲基纤维素、羧甲基多聚糖等组分具有强的电荷中和与桥联协同增效作用;CBF-1还含有纤维素、木质素等大分子量且带多种官能团的不溶性组分,在桥联和吸附过程中也起着重要作用. 相似文献
9.
10.
微生物絮凝剂普鲁兰絮凝机理初探 总被引:9,自引:0,他引:9
通过试验研究了微生物絮凝剂普鲁兰对不同原水的絮凝效果,进而对其絮凝机理及应用条件进行了探讨.试验表明,普鲁兰与无机絮凝剂(特别是铝盐和铁盐)复配使用在水处理领域具有潜在的应用前景. 相似文献
11.
介绍了一株棒状杆菌属(Corynebacterium)微生物絮凝剂MBF10,显色反应、紫外扫描和GC-MS分析均表明其富含羧基的多糖,是一种阴离子絮凝剂。该絮凝剂具有广谱絮凝作用,对猪场废水、啤酒废水、生活废水、油脂废水有较好的絮凝作用,适宜的条件下可达95%以上。实验表明其絮凝机理是以吸附架桥为主。 相似文献
12.
为解决污泥的处理处置难题,实现污泥减量化、无害化和资源化,在污泥中添加蘑菇渣、微生物发酵菌和生物质炭等辅料,进行共堆肥试验,设置T1(不添加辅料)、T2(添加30%的园林枯枝)、T3(添加20%的园林枯枝、9.9%的蘑菇渣和0.1%的微生物发酵菌)、T4(添加20%的园林枯枝和10%的生物质炭),以及T5(添加20%的园林枯枝、4.9%的蘑菇渣、0.1%的微生物发酵菌和5%的酸化生物质炭)5个好氧堆肥处理,考察各处理堆肥过程中温度变化、肥料的理化特性以及GI(发芽指数).结果显示:①T5处理的效果最好,堆肥至第3天,堆体温度达到70.5℃,并且温度不低于50℃的时间达到19 d. ②T5处理肥料的w(TKN)(TKN为总凯氏氮)、w(TP)和w(TK)均最高,分别达到3.88、0.64和1.10 g/kg,远高于其他4个处理;产品的GI随堆肥时间的延长逐渐增长,达到183%. ③T5处理的NH3排放最少,氮元素流失最低,能最大程度的转化成固化无机氮;残渣态重金属含量最高,不易浸出到环境中进入生态系统,生物毒性低.研究显示,蘑菇渣、微生物发酵菌和生物质炭能够促进污泥的腐熟,减少二次污染的产生,产品质量较好. 相似文献
13.
利用城市污水生物法处理产生的剩余污泥通过热解制备的吸附材料对低浓度SO2进行吸附研究,采用热分析的结合滴定的方法研究了对SO2的吸附机理。研究表明,水存在的情况下,化学吸附占有主导地位,没有水存在的情况下,物理吸附与化学吸附应该同时存在。结合TG-DTG曲线和吸附SO2后的TG-DTG曲线及DTA曲线,可以发现,曲线的失重情况明显不同,吸附SO2后的失重经历的阶段都要多些,这也充分的说明了在吸附SO2后有了新的物质的生成,生成的物质主要是硫酸盐类的物质。SO2首先扩散到污泥衍生吸附材料的孔隙中,进行物理吸附,物理吸附的SO2经过材料中的炭及金属物质的催化被氧化成SO3,由于有水的存在,SO3就和水发生反应生成硫酸,生成的硫酸可以进一步与材料中的氧化物进行反应生成硫酸盐或者亚硫酸盐。 相似文献
14.
15.
16.
污水处理系统剩余污泥碱处理融胞效果研究 总被引:25,自引:6,他引:25
研究了碱处理对污水生物处理系统剩余污泥的融胞效果及其影响因素.结果表明,碱处理能够使污泥细胞中有机物溶出,成为溶解性物质,从而使污泥液相的溶解性化学需氧量增加.pH值高于11.0时,污泥的絮体和细胞2种结构被破坏,而pH值低于11时,仅能破坏其絮体结构.碱处理过程中,起作用的是OH-离子,但同时加入的金属离子也会影响污泥融胞的效果.碱处理能减小污泥的重量,VS的最大去除率可达48.01%(TS约为40.40%,pH值13.0左右时).污泥粒径随着碱处理pH值的升高而减小.污泥浓度、pH值和处理时间均是影响碱处理效果的重要因素,正交试验表明,在高pH值下,污泥浓度越高,碱处理污泥融出的SCOD总量越多,但折算为相同pH值下,单位污泥融出的SCOD基本不变. 相似文献
17.
以污水处理站脱水污泥和煤为原料共热解制备吸附剂,将其用于活性艳红X-3B模拟染料废水的吸附处理.考察了吸附时间,温度,pH及吸附剂投加量对吸附效果的影响,并对其吸附动力学和热力学特性进行了探讨.结果表明:所制备吸附剂的碘吸附值为321.62 mg/g,产率为44.85%,比表面积为189.23 m2>/sup>/g,浸出液中未检测出重金属;吸附剂对活性艳红X-3B的去除率随吸附时间、温度和吸附剂投加量的增加均增大,并逐渐趋于平衡,而随pH的增加而减小;吸附剂对活性艳红X-3B的吸附动力学比较符合伪二级吸附动力学方程和二阶段吸附动力学方程,颗粒内扩散过程是吸附速率的控制步骤,但不是唯一的速率控制步骤;Langmuir等温方程比Freundlich等温方程更适合于描述该吸附行为;吸附焓变(ΔH0>/sup>)>0,吸附是一个吸热过程,提高温度有利于吸附的进行,吸附自由能变(ΔG0>/sup>)<0,吸附过程为自发进行,吸附熵变(ΔS0>/sup>)>0. 相似文献
18.
酸-碱预处理促进剩余污泥厌氧消化的研究 总被引:5,自引:5,他引:5
为提高剩余污泥的厌氧消化效率,投加酸和碱对污泥进行预处理,对比分析了不同预处理方式(单独碱处理、酸-碱处理和碱-酸处理)对污泥水解酸化的影响,并研究了各种预处理方式对后续厌氧消化产甲烷效率的影响.结果表明,单独碱处理的溶解性化学需氧量(SCOD)溶出量比酸碱联合处理要大16%左右,预处理第8 d,达到5 406.1 mg.L-1.采用先酸(pH 4.0,4d)后碱(pH 10.0,4 d)预处理,在污泥水解酸化过程中,乙酸产量及其占总短链脂肪酸(SCFAs)的质量分数均高于其他预处理方式,其乙酸产量(以COD/VSS计)可达到74.4 mg.g-1,占总SCFAs的60.5%.酸-碱预处理后污泥混合液的C∶N比值为25左右,C∶P比值在35~40之间,这比单独碱处理和碱-酸处理后的C∶N和C∶P比值更有利于后续厌氧消化.通过对比研究发现,酸-碱预处理后,厌氧消化到第15 d,酸-碱预处理污泥的累积甲烷产量(CH4/VSS加入)达到136.1 mL.g-1,分别是空白对照、碱-酸预处理和单独碱预处理方式的2.5、1.7和1.6倍,厌氧消化效率最高.经过8 d酸-碱预处理和15 d的厌氧消化,挥发性悬浮固体(VSS)总去除率达到60.9%,污泥减量效果比其他预处理要好.很显然,酸-碱预处理方式更有利于污泥厌氧消化及污泥减量化. 相似文献
19.
污泥厌氧发酵产氢的影响因素 总被引:11,自引:1,他引:11
污水生物处理过程中产生大量剩余污泥, 通常采用厌氧发酵处理并获取甲烷气体. 产氢产酸是污泥厌氧消化过程中的一个中间阶段. 本研究考察了原污泥和经碱处理的污泥在不同初始pH(3.0~12.5)条件下的产氢效果, 以及污泥性质和污泥浓度等对产氢效果的影响. 结果表明, 当初始pH为11.0时污泥发酵的产氢率达到最大值.采用原污泥发酵产氢时, 在初始pH为11.0的条件下发酵产氢获得的最大产氢率为8.1 mL/g, 而经碱处理的污泥在同样初始pH的条件下发酵产氢可将其产氢率提高一倍左右, 达到16.9 mL/g. 污泥经碱处理后厌氧发酵4d无甲烷产生, 且可有效地降低氢气消耗的速率. 另外, 污泥的VSS/SS值过低时会大大降低污泥的产氢率, 而污泥浓度对产氢率无明显影响. 相似文献
20.
为研究厌氧颗粒污泥对废水中有机污染物的初期吸附机制,在实验室条件下,采用静态、序批的方法考察了活的和灭活的厌氧颗粒污泥对废水中有机污染物COD的初期吸附率之差异,推算了吸附过程中热力学参数值,并对厌氧颗粒污泥初期吸附有机污染物前后的红外光谱进行了比对分析,结果表明,厌氧颗粒污泥对废水中有机污染物的初期吸附是一个复杂的综合过程,初期吸附作用主要表现为物理吸附,占总吸附去除COD的70%多,其次为生物吸附,大约在总吸附去除COD的20%~35%之间。红外光谱分析表明,厌氧颗粒污泥表面上的一些功能基团参与了对有机污染物的吸附作用,这些基团包括-OH、-CH2、-CH3、P-H、C=O、C-N及S=O。 相似文献