首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the end of the phytoplankton spring bloom, about 100 water samples were taken at 23 stations in the Baltic Sea. The samples were analyzed for particulate Cu, Fe, Zn, Cd, and Pb by atomic absorption as well as for chlorophyll and seston. Further subsamples were counted with an inverted microscope, and phytoplankton carbon content was calculated. The hydrographical-biological state of the Baltic Sea during spring is described. Two different water masses could be differentiated and these were separated by the halocline. The concentrations of particulate metals are in accordance with those published by other authors. No significant differences could be calculated between mean values of particulate metal concentrations in the two water bodies. Correlations between particulate metal concentrations and chlorophyll, seston, phytoplankton carbon and cell-count were calculated for both photic layer and deeper waters. Significant correlations were found only in the photic layer. The importance of standing crop for metal accumulation in seston is discussed.  相似文献   

2.
In 1982 and 1983, blooms of the planktonic alga Phaeocystis pouchetii were studied in the East Frisian coastal waters off Norderney, FRG. Morphological variability of the colonies, population development, effects on inorganic nutrient and oxygen budget, and the role in the seasonal plankton bloom sequence were investigated. in both years two separate Ph. pouchetii blooms occurred in late spring and early summer that were formed by the globosa-type exclusively. The pouchetii-type was only present during the interval between the first and second blooms in 1982. Growth conditions for Ph. pouchetii seem to be most favourable after a breakdown of a diatom bloom when the silicate reserves have been exhausted, phosphate concentrations are relatively low, but a rich supply of dissolved inorganic nitrogen is available. Contrary to diatom blooms, Ph. pouchetii blooms result in a high production of particulate organic carbon (POC). Another characteristic is the release of great amounts of dissolved organic substances, which cause extensive sea foam formation during the peaks and the subsequent breakdown of the blooms. Due to increased assimilation during mass development and intense disintegration after the breakdown, variations of the oxygen content of the water are significant. Presumably the intensity of blooms has increased in the past decade as indicated by sea foam formation which has actually been excessive in some years.  相似文献   

3.
Tidal currents, seston, and sediments separately influence growth of the hard clam, Mercenaria mercenaria, but it is uncertain how these factors may interact. A 3×3 factorial field experiment, carried out in Great Sound, a coastal lagoon in Southern New Jersey, USA, between May and September 1986, determined the relative effects of three sediment types and three site-specific seston/tidal current regimes on the individual growth of M. mercenaria. Analysis of variance of the change in shell length after 15 wk (differences in initial and final lengths) demonstrated a significant difference (P=0.0064) in growth among sites, but no significant differences (P=0.1331) for growth in different sediments, although trends were evident. Effects of sites were independent of sediment type (P=0.2621). Shell growth rates differed by 10.7% between the slowest and fastest sites, but only differed by 5.7% between sediment types, with fastest growth in sand and slowest in mud. Tidal current speeds and four measures of seston (chlorophyll a, particulate inorganic and organic matter, PIM and POM, and energy content) were measured >20 times in near-bottom waters at each site. Horizontal fluxes of POM exhibited higher correlation coefficients with growth rates, than did seston concentrations or current speeds alone. We attribute significant site differences to differences in horizontal seston fluxes fluxes among sites. We suggest that horizontal seston fluxes may be a major factor affecting individual growth of suspension-feeding bivalves.No. 216 of the Jackson Estuarine Laboratory Contribution Series  相似文献   

4.
Krill grazing data collected during cruises in the region of the Antarctic Polar Front (S.A. Agulhas Voyage 70) and the South Georgia shelf (R.V. Africana Voyage 119) during the austral summer of 1993 were analyzed to estimate the variability of crucial parameters of the gut fluorescence technique in relation to food availability and krill feeding history. Gut evacuation rates (k) and passage or throughput times (1/k) varied in the ranges of 0.101 to 0.424 h-1 and 2.3 to 9.9 h and were strongly correlated (p<0.001, r 2=0.98) to krill feeding activity (estimated as initial gut pigment content, G0) but not to ambient chlorophyll a concentration. A significant differences was found when k values derived from incubations in filtered seawater and low charcoal particle concentrations (0.4 to 0.8 mgl-1) were compared with values derived from krill fed high concentrations of charcoal (6 mgl-1). The efficiency of gut pigment destruction was among the highest recorded for zooplankton organisms, 58.1 to 98.4%, and did not covary significantly (p>0.05) with ambient food concentration. However, the pigment lost per individual krill was strongly correlated with the total amount of pigment ingested (p<0.001, r 2=0.99). We suggest that both gut evacuation rates and pigment destruction efficiency may be realistically estimated only when krill is allowed to continue ingesting particles uninterruptedly. Charcoal particle concentration should be equivalent to the in situ wet weight of total seston per unit volume. An objective criterion for the standardization of the measurement and calculation of k values is also proposed.  相似文献   

5.
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the food available to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by dilution the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.  相似文献   

6.
We estimated primary productivity and distributions of carbon in the phytoplankton, micro-zooplankton, and suspended and dissolved matter in various areas of the World Ocean to increase our information about the organic carbon cycle in the surface layer of the sea. Primary productivity ranged from about 0.1 gC m–2 day–1 in the Gulf of Mexico to 9 gC m–2 day–1 in nutrient-rich water off Peru. Phytoplankton carbon ranged from less than 10 g/l in the former to 750 g/l in the latter and in nutrient-rich water off southwest Africa. Micro-zooplankton carbon usually was less than 50 g/l in all waters, and was dominated by ciliates, copepodids, and copepod nauplii in all areas. Concentrations of particulate carbon ranged from 12 g/l off the east coast of South America to 850 g/l off southwest Africa. Concentrations of dissolved organic carbon varied between 0.5 and 1.5 mg/l in all areas except off Peru, where maximum values of 4.5 mg/l were observed. Turnover rates of carbon by small standing crops of micro-flagellates (1 to 5 longest dimension) and dinoflagellates in nutrient-poor waters were lower than those by large standing crops of diatoms and micro-flagellates in nutrient-rich waters. Concentrations of phytoplankton usually accounted for 20 to 55% and micro-zooplankton for 2 to 30% of the particulate carbon in the surface layer of the sea. Concentrations of dissolved organic carbon were not related to concentrations of particulate carbon in most waters except off Peru, where they appear to be directly related.  相似文献   

7.
The variations of the biochemical composition of Tetraselmis suecica and Isochrysis galbana during growth and decay were determined. the content of chlorophyll a (Chl-a) of the cultures, as expected, slowly degraded into phaeopigments during decay, confirming that chlorophyll measurements do not always provide an accurate estimate of phytoplanktonic biomass and, consequently, may fail if used to measure the food availability of particulate matter for consumers. Measurements of total amounts of proteins, carbohydrates and lipids, related to the nutritional value of particles in terms of caloric content, are shown to provide information on the readily available food for consumers, particularly during the blooms. the protein/carbohydrate, C/N and POC/Chl-a ratios were used to evaluate the differences between these two species during the growth and the decomposition processes. A comparison between experimental and field conditions was undertaken to implement our understanding of the growth and degradation processes of particulate organic matter of phytoplanktonic origin in the sea and its role on natural systems, during and after phytoplankton blooms.  相似文献   

8.
Changes in the phosphorus components of the particulate matter in seawater were studied in the eutrophicated waters of Mikawa Bay, Japan, during summer 1981. The contents of particulate phosphorus and hot-water extractable intracellular phosphorus displayed remarkable changes associated with phytoplankton blooms caused by wind-induced or upwelling-associated nutrient enrichment from the bottom water layers. Nanoplankton <10 m accounted for much of the particulate phosphorus (70 to 79% in June and July, and 44 to 78% in August and September); the contribution of large-sized phytoplankton >25 m varied from 9 to 49%, the peak values being attained under red-tide conditions. The capacity for phosphorus storage in cells was low in nanoplankton cells, high in large phytoplankton species. Differences in rates of phosphorus storage and growth between nanoplankton and large phytoplankton accounted for fluctuations in particulate phosphorus which were closely associated with fluctuations in phytoplankton blooms in Mikaw Bay.  相似文献   

9.
In the period from 1980 to 1984 organic phosphorus, nutrients, primary production rates (14C), chlorophyll a (chl a) standing crops, and basic oceanographic parameters were measured during 23 cruises at six stations in the open waters of the northern Adriatic Sea. These waters are significantly influenced by polluted Po River discharge. Organic phosphorus was correlated with several parameters which characterize phytoplankton activity and organic matter decomposition processes. In the late winter-spring period, organic phosphorus is produced during phytoplankton blooms. It is hypothesized that microzooplankton grazing is the main factor increasing the organic phosphorus concentrations in summer (up to 1.1 mol 1-1). Fall and winter had much lower values (below 0.3 mol 1-1) due to remineralization processes and an increased water mass exchange between the northern and central Adriatic regions. The direct contribution of organic phosphorus by freshwater discharge was not found to be significant. The higher organic phosphorus concentrations that can occur in low salinity waters are most likely due to their increased capability to support primary production.  相似文献   

10.
We investigated the influence of bacteria and metazooplankton on the production of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) during blooms of Emiliania huxleyi (Lohmann) Hay and Mohler in seawater mesocosms. The phytoplankton succession was marked by the rapid collapse of an initial Skeletonema costatum (Greville) Cleve bloom followed by a small E. huxleyi bloom. The collapse of the diatom bloom was accompanied by an increase in concentrations of dissolved DMSP (DMSPd) and bacterial abundance and activity (as determined by the thymidine incorporation technique). The increase in bacterial activity was followed by a rapid decrease in DMSPd concentrations which remained low for the rest of the experiment, even during the subsequent collapse of the E. huxleyi blooms. The absence of DMSPd and DMS peaks during the declining phase of the E. huxleyi blooms was attributed to the high bacterial activity prevailing at that time. The influence of metazooplankton grazing on DMSP and DMS production was investigated by adding moderate (24 mg dry weight m-3) and high (520 mg dry weight m-3) concentrations of Copepodite Stage V and adults of Calanus finmarchicus to two of four filtered (200 m mesh net) enclosures during the E. huxleyi blooms. The addition of C. finmarchicus, even in high concentrations, had no apparent effect on the dynamics of E. huxleyi, suggesting that the copepods were not grazing significantly on nanophytoplankton. The addition of copepods in high concentrations favored an accumulation of chlorophyll a and particulate DMSP. These results suggest that copepods were preying on the herbivorous microzooplankton which, in turn, was controlling the biomass of nanophytoplankton. DMS production was also enhanced in the enclosure with maximum metazooplankton biomass, suggesting that the grazing of C. finmarchicus on microzooplankton containing DMSP may contribute to DMS production. These results provide strong support to the emerging idea that bacteria and metazooplankton grazing play a dominant role in determining the timing and magnitude of DMS pulses following phytoplankton blooms.  相似文献   

11.
E. J. H. Head 《Marine Biology》1992,112(4):583-592
The results presented here were obtained at six locations during three cruises in 1985 (off the coast of Labrador), 1986 (at the eastern end of Viscount Melbourne Sound) and 1988 (off the coast of Labrador). In situ chlorophyll maximum concentrations were >7 gl-1 at depths of between 0 and 30 m in all sampling areas. In feeding experiments copepods attained higher gut pigment concentrations the longer they had been previously starved and higher concentrations when fed in the dark than when fed in the light. Community ingestion rates calculated from changes in particulate chlorophyll were higher than estimates derived from gut pigment data except when copepods had been starved for 24 h. Differences between estimates by the two methods suggested pigment destruction. In feeding experiments pigment: biogenic silica ratios in food and faecal pellets suggested that the length of starvation period affected the degree of pigment destruction differently at different stations and that feeding in the light greatly increased pigment destruction. A comparison of pigment: silica ratios in the water column, and in faecal pellets collected from copepods which had fed there, suggested that pigment destruction may occur in situ sometimes and that the degree to which it occurs may be affected by feeding history, light, diel feeding behaviour and species composition.  相似文献   

12.
Distribution of chlorophyll pigments, carotenoids and abundance of phytoplankton in relation to certain environmental factors of the nearshore waters off the central west coast of India (latitudes 15°30 to 18°30N) were studied monthly at 7 stations during 1970/1971. Changes in the hydrographical factors and the biological processes occurring in the region during different months appear to be influenced by the pattern of upwelling along the northern and southern parts of the west coast of India. The pigment concentration shows a marked decrease in October, but is followed by a slow but steady rise, which reaches its maximum in April/May. A slightly smaller maximum is noticed in December/January. The composition of various chlorophyll pigments and carotenoids indicated the physiological state of phytoplankton populations during different months in the region investigated. Abundance of specific phytoplanktonic elements, consisting mainly of diatoms, in space and time, characterises the waters of the central west coast of India, indicating a clear succession of species.  相似文献   

13.
Taxonomic composition, biomass as organic carbon, numerical abundance, and size distribution of the microplankton were determined at 6 Southern California nearshore locations in late May–early June, 1970. Samples were taken at approximately 5 m (10 m at one station) intervals through the upper 40 to 50 m to reveal some of the small-scale differences and levels of variability in the populations. Total microplankton biomass over all euphotic zone samples varied by more than two orders of magnitude (7.6 to 1,200 g C l-1). Average biomass at comparable sites (n=5) ranged from 48 to 240 g C l-1; biomass range within stations varied from about 5-fold to 120-fold. Total microplankton numbers varied approximately 22-fold (4.3×105 to 9.5×106 organisms l-1) over all euphotic zone samples, but the range within stations was always less than an order of magnitude. At comparable stations, nanoplankton biomass had ranges extending from 3.7-fold to 12-fold; its average percentage contribution (±1 SD) to the total microplankton biomass varied from 39±5% to 54±13%. Netplankton biomass showed a similar minimal range, but its greatest range was more than two orders of magnitude. Ranges of abundance of major taxonomic groups within stations varied considerably from about 2-fold to more than three orders of magnitude. The small-scale variability of the populations probably affects the reliability of the microplankton as a food source for pelagic consumers.  相似文献   

14.
The distribution and composition of suspended particulate matter in the sea is very complex and not well understood. In this study, 3 different approaches were used to estimate the quantity and quality of suspended particulate matter in 34 samples from the euphotic zone of 9 stations in the Gulf of California. The results from electronic, microscopic and chemical analyses showed that most parameters measured were significantly correlated, e.g. the total particulate volume from particles of 2 to 150 diameter, as obtained from the Coulter Counter, proved to be significantly related to such parameters as seston, particulate nitrogen, particulate carbon, phytoplankton carbon and chlorophylla. It can be concluded from this study that the Coulter Counter can be a very useful instrument to determine, with little effort, the size, distribution, and volume of particulate suspended matter in the sea. These data can then be used to calculate some important biological parameters which are necessary to establish meaningful models of phytoplankton production. More detailed studies are necessary to prove the above mentioned relationships in depth, space and time.Contribution from the Scripps Institution of Oceanography, University of California, San Diego. This work was completed under the Scripps Tuna Oceanography Program supported by the Bureau of Commercial Fisheries under Contract No. 14-17-0007-963. Ship time was provided from National Science Foundation funds.  相似文献   

15.
 As part of an ongoing study of changes in the trophic pathways of Florida Bay's pelagic ecosystem, the nutritional environment (seston protein, lipid and carbohydrate levels), diet (taxon-specific microplankton ingestion rates) and egg production rate of the important planktonic copepod Acartia tonsa were measured off Rankin and Duck Keys in July and September 1997 and in January, March and May 1998. Rankin Key has been the site of extensive sea grass mortality and persistent ultraplankton blooms since 1987. Duck Key has experienced neither of these perturbations. Protist (auto-plus heterotroph) biomass was approximately twice as high off Rankin as off Duck Key. Diatoms, dinoflagellates and heterotrophic protists dominated the food environment off Rankin Key, while cells <5 μm diam often predominated off Duck Key. Protein and carbohydrate concentrations were higher off Rankin Key than Duck Key, while average lipid levels were usually low at both stations. Ingestion rates at both stations frequently approached temperature- and food-dependent maxima for the species, exceeding 100% of estimated body C d−1 on 3 of 5 occasions off Rankin Key. Egg production rates, however, were consistently low (Rankin: 3 to 16 eggs copepod−1 d−1; Duck: 1 to 12 eggs copepod−1 d−1), and gross egg production efficiencies (100% × egg production C/ingested C) averaged <10%. At Duck Key, egg production rate varied with temperature and food concentration, while off Rankin Key, egg production was strongly correlated with seston protein content. The efficiency with which lipids (which were scarce in the seston) were transferred from the diet to the eggs increased exponentially with decreasing seston lipid content. Egg production efficiencies based on protein, however, were independent of seston protein content and never exceeded 10%. Received: 23 December 1998 / Accepted: 23 March 2000  相似文献   

16.
Lipid class profiles and total fatty acid composition of particulate matter were studied in the northeast Atlantic during the spring bloom and fall. Eddies of known physical and chemical properties were sampled at different depths. HPLC pigment data were used to characterize the phytoplankton communities. In spring, a dominance of prymnesiophytes was recorded at all depths, while in fall prochlorophytes dominated near the surface and prymnesiophytes only at deep chlorophyll maximum. Lipid classes included triglycerides, sterols, glycolipids and phospholipids. A differential relationship between phytoplankton abundance and lipid accumulation was observed: spring lipid concentrations were positively related to phytoplankton biomass, while fall particulate lipid did not show any relationship. The main feature was a northward increase in lipid concentrations unrelated to the mesoscale hydrological structures. Polar lipids dominated over neutral acyl-glycerols with phospholipids dominating over glycolipids in spring, while glycolipids dominated in fall. This resulted from different nutrient availability with a dominance of flagellates associated with mesotrophy in spring and of picophytoplankton associated with oligotrophy in fall. In terms of fatty acids, factorial correspondence analyses illustrate the influence of seasonally changing assemblages: (1) in spring, the main source of variability was the bloom with an opposition between bloom sites characterized by n-3 and n-6 PUFA, and more detrital deep samples characterized by saturated, monoenoic and branched acids; (2) fall fatty acid profiles were similar at all depths and very close to those observed for spring deep samples. Comparison of pigment and fatty acids using redundancy analysis suggested that pelagophytes were linked to saturated and branched acids. It also showed that prymnesiophytes and prochlorophytes were significantly associated with n-6 and n-3 PUFA. The spring period illustrated the complexity of these relationships with dinoflagellates and prymnesiophytes linked with n-3 PUFA, diatoms linked with palmitoleic and myristic acids, and pelagophytes linked with n-6 PUFA and higher-chain-length monoenes.  相似文献   

17.
The feeding structures or houses of the giant larvacean Bathochordaeus sp. serve as both habitat and food for the calanoid copepod Scopalatum vorax. Gut contents of S. vorax include both microbial and metazoan associates of larvacean houses, and possibly the house-mucus matrix itself. Copepods were observed and collected from larvacean houses between 100 and 500 m in Monterey Bay, California, using a submersible ROV (remotely operated vehicle) from the Monterey Bay Aquarium Research Institute. Gut contents were compared to potential food items on the houses and in the open water (not associated with the house). Copepods were generalist feeders, with amorphous detritus, diatoms, and copepods or other crustacean parts dominating gut contents. Protozoans and algae other than diatoms were rarer in guts. Houses contained a diverse assemblage of microplankton and metazoans, both intact specimens and detrital remains of these. Numbers of diatoms and fecal pellets were enriched by 1 to 3 orders of magnitude on houses compared to numbers in surrounding water. Many of the abundant species of diatoms and copepods on houses occurred in S. vorax guts. This observation coupled with S. vorax feeding habits observed in situ and in the laboratory provide evidence for feeding on houses. S. vorax appears to possess special adaptations to living in a resource-limited environment, such as gorging as a feeding adaptation, chemosensory structures to help locate houses, and the ability to change feeding modes. Consumption of detritus at depth by S. vorax provides evidence that metazoans contribute to remineralization of particulate organic carbon in the mesopelagic zone.  相似文献   

18.
Depth profiles of particulate protein-nitrogen at 4 oceanic and 2 upwelling stations in the North Atlantic Ocean were measured by a new fluorometric method. The protein-nitrogen in the upper 20 m ranged from 0.19 to 1.61 μg-at N/1 at the oceanic stations and from 0.43 to 3.54 μg-at/1 at the upwelling stations. The mean values in the euphotic zone were 0.54 μg-at N/1 for the oceanic stations and 1.70 μg-at N/1 for the upwelling stations. The ratio of protein-nitrogen to chlorophyll at the two sets of stations was 2.83 and 0.54 μg-at N/μg chlorophyll, respectively. Regression analysis of the pooled data yielded a detritus and zooplankton-free ratio of 0.38 μg-at N:μg chlorophyll. Calculations of the phytoplankton protein-nitrogen, based on this ratio, suggest that in the oceanic water only 20% of the sestonic protein-nitrogen is associated with the phytoplankton. In the upwelling waters, the phytoplankton may account for 65% of the sestonic proteinnitrogen.  相似文献   

19.
Blooms of chain-forming diatoms often terminate with the mass flocculation and subsequent settlement of cells from the nutrient-depleted euphotic zone. While mass diatom aggregation has been suggested as an adaptive mechanism for placing resting spores in the deep sea, we hypothesized that aggregation may confer an immediate adaptive advantage to the associated diatoms as well. We tested this hypothesis by comparing the photosynthetic activity, pigment composition and nutrient-uptake rates of aggregated and suspended diatoms over time. Diatom aggregates were collected by SCUBA divers in the Santa Barbara Channel (34°23N; 119°50W) on 4 March 1987 and monitored for 9 d in the laboratory. Diatom aggregates sustained chlorophyll a-specific primary production rates two to nine times higher than those of freely suspended diatoms from the surrounding seawater. The timing of maximum productivity was strongly correlated with the appearance of remineralized ammonia within the aggregates. Chlorophyll a-specific nitrate-uptake rates were routinely three to nine times lower in diatom aggregates than in the surrounding seawater. Primary production and pigment concentrations of diatom aggregates aged in situ displayed changes similar to those observed in the laboratory. These results suggest that diatoms associated with aggregates maintain higher photosynthetic rates than freely suspended diatoms by efficiently exploiting remineralized ammonia within the aggregate microenvironment, in preference to external nitrate sources. The enhanced nutrient environment within aggregates may be important for understanding the adaptive significance of the mass flocculation of diatom blooms.  相似文献   

20.
Several concentrations of extracts prepared from the eyestalks of a specimen of Uca pugilator were injected into other U. pugilator individuals. The distal pigment of the eyes first became light adapted and then dark adapted, the whole process lasting 6 h. The mean integrated response for light adaptation increased progressively up to the highest tested extract (3 eyestalk equivalents/dose), but with the darkadapting response the maximal effect was produced by the extract containing 2 eyestalk equivalents/dose. Gel filtration of eyestalk extracts in Sephadex G-50 showed that the fractions associated with greatest light adaptation were also associated with greatest pigment dispersion in the melanophores. Almost no light or dark adaptation of the retinal pigment resulted from injections of eyestalk extracts treated with -chymotrypsin which supports the interpretation that these substances are polypeptides of neurosecretory origin.Supported by Grant GB-7595 X from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号