首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A silent electric discharge was applied to decompose halogenated methanes including CCl4, CHCl3, CFCl3, CF2Cl2 and CF3Cl, in argon-containing gas mixtures. The decompositions of the target compounds were studied in static reactors at a fixed electric field and room temperature. The reaction products were analyzed by FT-IR spectroscopy, gas chromatography and UV spectrophotometry. The results demonstrated, that the radical-type decomposition of chlorofluoromethanes led to products formed by realignment of the halogen atoms. The decomposition of CCl4 was faster than that of the cholorofluoromethanes, and produced perchloroethane and chlorine. CHCl3 exhibited the highest decomposition rate and produced a large variety of products.  相似文献   

2.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3Cl, CH2Cl2, CHCl3, CCl4, C2H3Cl, and C2H5Cl) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-injection incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments. A 99.99-percent destruction efficiency was attained in one second at temperatures ranging from 1280 to 960 K, with CCl4 requiring the highest temperature for destruction and C2H5Cl the lowest. For all compounds except C2H5Cl, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCl3.  相似文献   

3.
二次热解吸-气相色谱-质谱分析室内挥发性有机化合物   总被引:1,自引:1,他引:0  
采用二次热解吸-气相色谱.质谱法对室内空气进行了定量和定性分析,共检出挥发性有机物245种,包括烷烃、烯烃、芳香类化合物、卤代烃、醇、醛、酮、酯、醚等化合物,住宅类室内空气中挥发性有机化合物浓度平均值明显高于办公类室内这些物质的浓度平均值,对室内空气样品分析中的特例进行了可能的污染源解析,推测室内过量使用液体胶粘剂有可能是引起污染物严重超标的原因之一.  相似文献   

4.
Biodegradation of chlorinated solvents in a water unsaturated topsoil   总被引:5,自引:0,他引:5  
In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl(3)), 1,1,1-trichloroethane (CH(3)CCl(3)), tetrachloromethane (CCl(4)), trichloroethene (C(2)HCl(3)) and tetrachloroethene (C(2)Cl(4)) was studied in anoxic laboratory experiments designed to simulate denitrifying conditions in water unsaturated topsoil. Active denitrification was demonstrated by measuring the release of 15N in N(2) to the headspace from added 15N labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil.The headspace concentrations of all the chlorinated solvents except CH(3)CCl(3) were significantly (P相似文献   

5.
Operating conditions were optimised in a new compact scrubber in order to remove odorous sulphur (H(2)S and CH(3)SH) and ammonia compounds. The influence of the superficial gas and liquid velocities, pH, contactor length, inlet concentrations (sulphur compounds, ammonia, chlorine), and the mixing effects was characterised. Whereas abatement increased with velocities, pH and the chlorine concentration, an increase of inlet CH(3)SH concentration drove to a worse efficiency of process. Moreover, the contactor length and the presence of another pollutant in the gas phase only played a role on the methylmercaptan removal. Finally, the reactive consumptions were estimated at the outlet of the reactor. The chlorination by-product quantification permitted to understand the under-stoichiometry.  相似文献   

6.
Removal of methyl chloroform in a coastal salt marsh of eastern China   总被引:3,自引:0,他引:3  
Wang J  Li R  Guo Y  Qin P  Sun S 《Chemosphere》2006,65(8):1371-1380
The atmospheric burden of methyl chloroform (CH(3)CCl(3)) is still considerable due to its long atmospheric lifetime, although CH(3)CCl(3) emissions have declined considerably since it was included into the Montreal Protocol. Moreover, CH(3)CCl(3) emissions are used to estimate hydroxyl radical (OH) levels, trends, and hemispheric distributions, and thus the mass balance of the trace gas in the atmosphere is critical for characterizing OH concentrations. Salt marshes may be a potential sink for CH(3)CCl(3) due to its anoxic environment and abundant organic matter in sediments. In this study, seasonal dynamics of CH(3)CCl(3) fluxes were measured using static flux chambers from April 2004 to January 2005, along an elevational gradient of a coastal salt marsh in eastern China. To estimate the contribution of higher plants to the gas flux, plant aboveground biomass was experimentally harvested and the flux difference between the treatment and the intact was examined. In addition, the flux was analyzed in relation to soil and weather conditions. Along the elevational gradient, the salt marsh generally acted as a net sink of CH(3)CCl(3) in the growing season (from April to October). The flux of CH(3)CCl(3) ranged between -3.38 and -32.03 nmol m(-2)d(-1) (positive for emission and negative for consumption), and the maximum negative rate occurred at the cordgrass marsh. However, the measurements made during inundation indicated that the mudflat was a net source of CH(3)CCl(3). In the non-growing season (from November to March), the vegetated marsh was a minor source of CH(3)CCl(3) when soil was frozen, the emission rate ranging from 3.43 to 7.77 nmol m(-2)d(-1). However, the mudflat was a minor sink of CH(3)CCl(3) whether it was frozen or not in the non-growing season. Overall, the coastal salt marsh in eastern China was a large sink for the gas, because the magnitude of consumption rate was lager than that of emission, and because the duration of the growing season was longer than that of the non-growing season. Plant aboveground biomass had a great effect on the flux. Comparative analysis showed that the direction and magnitude of the effect of higher plants on the flux of CH(3)CCl(3) depended on timing of sampling vegetation type. In the growing season the plant biomass decreased the gas flux and acted as a large sink of the gas, whereas it presented as a minor source in the non-growing season. However, the mechanism underlying plant uptake process is not clear. The CH(3)CCl(3) flux was positively related to the dissolved salt concentration and organic matter content in soil, as well as light intensity, but it was negatively related to soil temperature, sulfate concentrations, and initial ambient atmospheric concentrations of CH(3)CCl(3). Our observations have important implications for estimation of the tropospheric lifetime of CH(3)CCl(3) and global OH concentration from the global budget concentration of CH(3)CCl(3).  相似文献   

7.
Alapi T  Dombi A 《Chemosphere》2007,67(4):693-701
The gas-phase photooxidations of CCl(4), CHCl(3), CH(2)Cl(2) and their binary mixtures in an O(2) stream were studied in a flow reactor under various experimental conditions using a low-pressure mercury lamp as light source covered with a high-purity silica sleeve being used. The 184.9 nm VUV irradiation emitted is responsible for the Cl-C bond rupture in the chlorinated methanes and for the formation of O(3) from O(2). The rate of degradation of H-containing chlorinated methanes increased sharply on increase of their initial concentrations, most probably of a (*)Cl chain reaction, as indicated by the increase in the molar ratio of the amount of HCl formed to the amount of H-containing target substance decomposed. The experimental results suggested that the further transformations of the radicals and products formed play an important role as (*)Cl sources, causing a considerably higher rate of decomposition of the H-containing target substances. In a humidified O(2) stream, the (*)OH formed opens up another route for oxidation of the target substances. Thus, the rates of degradation of CH(2)Cl(2) and CHCl(3) increased on increase of the relative humidity, whereas the water vapour had no effect at all on the decomposition of CCl(4). At the same time, competition occurs between (*)Cl or (*)OH for reactions with the target substance. The photooxidation of binary mixtures was investigated too. The addition of CCl(4) or CHCl(3) to CH(2)Cl(2) strongly increased its degradation rate. The addition of CH(2)Cl(2) did not have a considerable effect on the rate of degradation of CHCl(3).  相似文献   

8.
The biodegradation of weathered polychlorinated biphenyls (PCBs) (mono and di-chlorinated biphenyls along with PCBs partially ascribed to Aroclor 1242 and 1254) occurring at 1.5-2.5 mg/kg in three different sediments collected from the Porto Marghera contaminated area of Venice Lagoon (Italy) was reported in this study. Strictly anaerobic, slurry microcosms consisting of sediments suspended (at 25% v/v) in a marine salt medium, lagoon water or lagoon water supplemented with NaHCO3 and Na2S were developed and monitored for PCB transformation, sulfate consumption and methane (CH4) production for 6 months. A marked depletion of highly chlorinated biphenyls along with the accumulation of low-chlorinated, often ortho-substituted biphenyls was observed in the biologically active microcosms, where a remarkable consumption of sulfate and/or a significant production of CH4 were also detected. Notably, a more extensive PCB transformation was observed in the microcosms developed with site water (both without or with NaHCO3 plus Na2S), where both the initial concentration of sulfate and sulfate consumption were five fold-higher than in the corresponding microcosms with salt medium. These data indicate that weathered PCBs of the three contaminated sediments of Porto Marghera utilized in this study can undergo reductive dechlorination, probably mediated by indigenous sulfate-reducing and/or methanogenic bacteria.  相似文献   

9.
Biofiltration of a mixture of volatile organic emissions   总被引:9,自引:0,他引:9  
Air biofiltration is now under active consideration for the removal of the volatile organic compounds (VOCs) from polluted airstreams. To optimize this emerging environmental technology and to understand compound removal mechanisms, a biofilter packed with peat was developed to treat a complex mixture of VOCs: oxygenated, aromatic, and chlorinated compounds. The removal efficiency of this process was high. The maximum elimination capacity (ECmax) obtained was approximately 120 g VOCs/m3 peat/hr. Referring to each of the mixture's components, the ECmax showed the limits in terms of biodegradability of VOCs, especially for the halogenated compounds and xylene. A stratification of biodegradation was observed in the reactor. The oxygenated compounds were metabolized before the aromatic and halogenated ones. Two assumptions are suggested. There was a competition between bacterial communities. Different communities colonized the peat-based biofilter, one specialized for the elimination of oxygenated compounds, the others more specialized for elimination of aromatic and halogenated compounds. There was also substrate competition. Bacterial communities were the same over the height of the column, but the more easily biodegradable compounds were used first for the microorganism metabolism when they were present in the gaseous effluent.  相似文献   

10.
ABSTRACT

Air biofiltration is now under active consideration for the removal of the volatile organic compounds (VOCs) from polluted airstreams. To optimize this emerging environmental technology and to understand compound removal mechanisms, a biofilter packed with peat was developed to treat a complex mixture of VOCs: oxygenated, aromatic, and chlorinated compounds. The removal efficiency of this process was high. The maximum elimination capacity (ECmax) obtained was ~120 g VOCs/m3 peat/hr. Referring to each of the mixture's components, the ECmax showed the limits in terms of biodegradability of VOCs, especially for the halogenated compounds and xylene.

A stratification of biodegradation was observed in the reactor. The oxygenated compounds were metabolized before the aromatic and halogenated ones. Two assumptions are suggested. There was a competition between bacterial communities. Different communities colonized the peat-based biofilter, one specialized for the elimination of oxygenated compounds, the others more specialized for elimination of aromatic and halogenated compounds. There was also substrate competition. Bacterial communities were the same over the height of the column, but the more easily biodegradable compounds were used first for the microorganism metabolism when they were present in the gaseous effluent.  相似文献   

11.
The gas-phase decomposition of CCl(4), CHCl(3) and CH(2)Cl(2) and their binary mixtures was studied in a flow-type reactor in a nitrogen gas stream, using a low-pressure mercury vapour lamp covered with a high-purity silica quartz sleeve. The 184.9 nm vacuum-ultraviolet (VUV) light emitted is able to rupture the C-Cl bond in these target substances. For H-containing compounds, the decomposition takes place not only by direct photolysis, but also by H abstraction by .Cl formed during the direct photolysis of the target substances. The relative contributions of direct photolysis and .Cl-sensitized reactions to the decomposition were estimated at different initial concentrations. The addition of CCl(4) to CHCl(3) or CH(2)Cl(2) increased their decomposition rates via increase of the .Cl concentration, whereas the addition of CH(2)Cl(2) to CHCl(3) decreased its degradation rate, suggesting that CH(2)Cl(2) acts as a .Cl radical scavenger. The variation of the product distribution confirms the effect of the composition of the irradiated gas mixtures on the relative contributions of .Cl-sensitized reactions and direct photolysis.  相似文献   

12.
Gas-phase reaction of CFC-12 (CCl2F2) with methane was carried out in a plug flow reactor over the temperature range of 873-1123 K. The major organic halocarbons formed during the reaction were C2F4, C2H2F2, CHClF2, CH3Cl, C3H2F6 and CCl3F. The formation of all products except C2H2F2 decreased with temperature, while the selectivity to C2H2F2 (difluoroethylene) increased with temperature and reached approximately 80% at 1123 K. Under these reaction conditions, methane acts as hydrogen and carbon source, resulting in the formation of an unsaturated C2 hydrofluorocarbon from two C1 precursors.  相似文献   

13.
Controlled laboratory chlorination of acetaldehyde (ACD) under typical drinking water conditions (pH 6.7, 7.6 and 8.8, and temperature 4 degrees C and 21 degrees C) revealed that the formation of chloral hydrate (CH), the most common halogenated acetaldehyde (HAs), increased with contact time (0-10 days). However, at increased pH and temperature, CH reached maximum levels and subsequently broke down partially to chloroform and other unidentified compounds. After 10 days contact time, a maximum of 63% (molar) of the initial ACD consumed were converted into CH or chloroform (TCM). Various surveys of drinking water systems indicated that ACD is not the only precursor of CH. A suite of aldehydes (including ACD), and chlorinated disinfection by-products (including TCM and CH) were found in most distribution systems. The levels of bromide in source water impacted speciation of HAs. In addition to CH, brominated and other mixed (Cl/Br) acetaldehydes were detected in most samples; the speciation of HAs and THMs followed comparable trends. Similar to chloroform for trihalomethanes, CH contributed from as low as 5% to up to 60% of the total HAs. The bromine incorporation factors (BIF) in THMs and HAs were shown to increase with increasing bromide ion concentrations in the source water. Brominated THMs are more readily formed than their HA analogues; in fact, BIF values for THMs were 2-3 times higher than for the HAs. It was found that HAs may be as high as THMs in some drinking waters. As a result, the determination of the other target HAs, in addition to CH, is necessary for a better assessment of the pool of disinfection by-products in drinking water.  相似文献   

14.
The rapid development of large-scale livestock husbandry has caused serious air pollution problems (e.g., The Tuzuoqi demonstration farm belonging to the Yili Group. The farm is located in the suburb of Hohhot City in northern China). In this study, the gases in typical areas of a large-scale dairy farm were sampled and measured for volatile organic compounds (VOCs), hydrogen sulfide, and ammonia concentrations. Fifty-two species of VOCs were identified. The VOCs emitted from the cowshed mainly consisted of halogenated hydrocarbons (16,960 µg/m3), ketones (15,700 µg/m3), esters (9889 µg/m3), and sulfur compounds (3677 µg/m3). The VOCs from the oxidation pond were mainly composed of halogenated hydrocarbons (21,940 µg/m3) and ketones (3589 µg/m3). The VOCs from the solid–liquid separation tank comprised halogenated hydrocarbons (32,010 µg/m3), ketones (7169 µg/m3), and sulfur compounds (1003 µg/m3). The highest concentrations of ammonia and hydrogen sulfide were obtained from the milking parlor and solid–liquid separation tank, respectively. The ammonia concentration declined gradually due to the superposition of ammonia emitted from the cowshed and milking parlor. Analysis results of the influences of distance and meteorological factors on the dispersion of ammonia and hydrogen sulfide suggested that the dilution factors decreased with increasing distance from the emission source. Within distance ranges of 0–10 and 10–25 m, the concentration dilution factors were positively correlated with wind speed and temperature but negatively correlated with humidity and atmospheric pressure. The results of our work can provide a theoretical basis for the prevention and control of odorous gases in large-scale livestock farms.

Implications: Gases in typical areas of a large-scale dairy farm were sampled, and a total of 52 species of VOCs were identified. The highest concentrations of ketones, sulfur compounds, and esters were obtained at the cowshed (15,700, 3677, and 9889 µg/m3, respectively). Within the distance ranges of 0–10 and 10–25 m, the concentration dilution factors were positively correlated with wind speed and temperature.  相似文献   


15.
Anaerobic decomposition of halogenated aromatic compounds   总被引:5,自引:0,他引:5  
Halogenated compounds constitute one of the largest groups of environmental pollutants, partly as a result of their widespread use as biocides, solvents and other industrial chemicals. A critical step in degradation of organohalides is the cleavage of the carbon?halogen bond. Reductive dehalogenation is generally the initial step in metabolism under methanogenic conditions, which requires a source of reducing equivalents, with the halogenated compound serving as an electron acceptor. Dehalogenation is greatly influenced by alternate electron acceptors; e.g. sulfate frequently inhibits reductive dehalogenation. On the other hand, a number of halogenated aromatic compounds can be degraded under different electron-accepting conditions and their complete oxidation to CO(2) can be coupled to processes such as denitrification, iron(III)-reduction, sulfate reduction and methanogenesis. Reductive dehalogenation was the initial step in degradation not only under methanogenic, but also under sulfate- and iron(III)-reducing conditions. Dehalogenation rates were in general slower under sulfidogenic and iron-reducing conditions, suggesting that dehalogenation was affected by the electron acceptor. The capacity for dehalogenation appears to be widely distributed in anoxic environments; however, the different substrate specificities and activities observed for the halogenated aromatic compounds suggest that distinct dehalogenating microbial populations are enriched under the different reducing conditions. Characterization of the microbial community structure using a combination of biomolecular techniques, such as cellular fatty acid profiling, and 16 S rRNA fingerprinting/sequence analysis, was used to discern the distinct populations enriched with each substrate and under each electron-accepting condition. These combined techniques will aid in identifying the organisms responsible for dehalogenation and degradation of halogenated aromatic compounds.  相似文献   

16.
Vrtacnik M  Voda K 《Chemosphere》2003,52(10):1689-1699
Two quantitative structure–activity relationship (QSAR) methods: hologram QSAR (HQSAR) and comparative molecular field analysis (CoMFa) were evaluated for predicting half-lives of the hydroxyl radicals reaction with substituted aromatic compounds. The HQSAR approach, which is topological in nature, results in a mathematical model which was more stable and has a greater predictive ability than the model derived on the 3-D CoMFA approach. Interpretations of the colour coded results of both methods are in good agreement with the proposed mechanism of the hydroxyl radical oxidation of halogenated aromatic compounds in the atmosphere.  相似文献   

17.
Environmental Science and Pollution Research - Concentration of dissolved aromatic and halogenated non-methane volatile organic compounds (NMVOCs) was estimated in sewage flowing through the open...  相似文献   

18.
Twenty-four-hour integrated ambient air samples were collected in canisters at 10 locations within Kuwait’s major power station: Doha West Power Station to assess the spatial distribution of volatile organic compounds (VOCs) within the perimeter of the station. A total of 30 samples, i.e., three samples per location, were collected during February and March. The samples were analyzed using a gas chromatography with flame ionization detection (GC-FID) system and following the U.S. EPA Method TO-14A with modification. The results reflected the emission activities on the site and the meteorological conditions during sampling. Generally speaking, there was a negative correlation between the ambient temperature and the VOC concentrations, which indicates the sources were local. The halogenated compounds formed the highest proportion (i.e. 50–75 %) of the total VOC concentrations at the ten locations. 1,2,4-Trichlorobenzene and Vinyl Chloride concentrations were the highest amongst the other halogenated compounds. The aromatic compounds formed the least proportion (i.e. 1–4%) of the total VOC levels at all locations with Toluene having the highest concentrations amongst the aromatic compounds at seven locations. Propene, which is a major constituent of the fuel used, was the highest amongst the aliphatic compounds. The findings of this study and other relevant work suggests the measured VOC levels were the highest over the year, nevertheless, further work is required to assess the precisely temporal variation of VOC due to change in meteorological conditions and the emission rates.

Implications: Assessment of VOC concentrations around a power plant in Kuwait during the peak season showed halogenated compounds to be the dominant group. The calculated indoor concentrations were lower than those reported in a residential area about 12 km away.  相似文献   


19.
The paper presents the results of determination of volatile organohalogen compounds (VOX) in urine samples from subjects exposed to these compounds in their workplaces and through consumption of chlorinated tap water. The analytes were isolated and preconcentrated from the complex urine samples using the thin layer headspace (TLHS) technique with autogenous generation of the liquid sorbent. Final gas chromatographic determination was carried out by direct aqueous injection with electron capture detection (DAI-ECD). The results indicate that only a small fraction (<4%) of the VOX input is excreted with urine in the non-metabolized form. A positive correlation was found between the occupational levels of VOX in the workplace and their levels in urine. VOX levels in the urine of subjects not exposed to them in the workplace were significantly lower. Their presence in the organisms was most probably related to consumption of tap water produced by chlorination of surface waters.  相似文献   

20.
Water can be removed from pig slurry by evaporation, through the application of wasted heat from a power plant or from other processes. Apart from obtaining a concentrate with an obviously higher nutrient concentration than the original slurry, another objective of water removal is to obtain water as condensate, which could be reused. The objective of this work was to study the vacuum evaporation of pig slurry liquid fraction and to evaluate condensate composition as a function of both pH (4, 5, and 6) and pig slurry type (fresh slurry and anaerobically digested slurry). Batch experiments showed that condensate characteristics, total ammonia nitrogen (NH3-N), volatile fatty acids (VFA), and chemical oxygen demand were strongly dependent on initial slurry pH. In addition to producing part of the required thermal energy, previous anaerobic digestion presented several other clear advantages. The consumption of VFA and other volatile organic compounds during anaerobic digestion reduced the volatilization of organic matter in the evaporation treatment and, consequently, provided a higher quality condensate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号