首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 473 毫秒
1.
UV/Fenton法处理间-甲酚废水   总被引:6,自引:0,他引:6  
利用UV/Fenton工艺对模拟间-甲苯酚废水进行了处理,研究了H2O2加入量、FeSO4加入量、pH、原水初始COD值、环境温度、反应时间等因素对COD去除率的影响.实验表明:间-甲苯酚浓度为100mg/L、初始COD值251 mg/L的废水,在30℃下,pH为4.Q,[H2O2]/[Fe^2+]=15(质量浓度比),紫外灯照射3 h后,COD去除率达86.3%,若再经Ca(OH)2絮凝沉降,则COD去除率提高到92.6%.同时,对Fenton及UV/Fenton的处理效果进行了比较,实验表明:UV/Fenton的处理效果明显优于Fenton法.  相似文献   

2.
利用UV/Fenton工艺对模拟间-甲苯酚废水进行了处理,研究了H2O2加入量、FeSO4加入量、pH、原水初始COD值、环境温度、反应时间等因素对COD去除率的影响.实验表明:间-甲苯酚浓度为100mg/L、初始COD值251 mg/L的废水,在30℃下,pH为4.Q,[H2O2]/[Fe2 ]=15(质量浓度比),紫外灯照射3 h后,COD去除率达86.3%,若再经Ca(OH)2絮凝沉降,则COD去除率提高到92.6%.同时,对Fenton及UV/Fenton的处理效果进行了比较,实验表明:UV/Fenton的处理效果明显优于Fenton法.  相似文献   

3.
超声-Fenton高级氧化降解染料工业废水的研究   总被引:6,自引:3,他引:3  
采用超声与Fenton高级氧化技术联合处理染料废水,取得了满意的效果。同时考察了初始浓度、初始pH值、超声时间、超声频率、超声功率、H2O2和FeSO4初始浓度等因素对其COD去除效果的影响,当超声波频率为45 kHz,功率为200 W,初始pH值为2.63,超声时间为150 min,H2O2浓度为60 mmol/L,FeSO4浓度为12 mmol/L时,染料废水COD去除率达到91.8%。  相似文献   

4.
对UV/草酸铁/H2O2法处理乙草胺废水进行研究,考察了H2O2浓度、FeSO4浓度、K2C2O4浓度、pH值及反应时间对乙草胺去除效果的影响.结果表明,当H2O2/FeSO4/K2C2O4(化学剂量数比)=5051,H2O2/乙草胺初始COD(质量浓度比)=31时,该技术对乙草胺的去除率可达85%以上.这表明,采用UV/草酸铁/H2O2法可以有效地处理含乙草胺废水.  相似文献   

5.
UV/草酸铁/H2O2法处理乙草胺废水的研究   总被引:3,自引:0,他引:3  
对UV/草酸铁/H2O2法处理乙草胺废水进行研究,考察了H2O2浓度、FeSO4浓度、K2C2O4浓度、pH值及反应时间对乙草胺去除效果的影响。结果表明,当H2O2/FeSO4/K2C2O4(化学剂量数比)=50:5:1,H2O2/乙草胺初始COD(质量浓度比)=3:1时,该技术对乙草胺的去除率可达85%以上。这表明,采用UV/草酸铁/H2O2法可以有效地处理含乙草胺废水。  相似文献   

6.
李亚峰  高颖 《环境工程学报》2015,9(3):1233-1237
实验研究主要影响因素对超声波/Fenton试剂处理苯酚废水效果的影响,确定工艺参数。以人工配制的模拟苯酚废水为实验水样,通过静态实验研究pH值、FeSO4·7H2O投加量、H2O2投加量和超声时间对苯酚和COD去除率的影响。研究结果表明,对于苯酚浓度为200 mg/L, COD 为476.6 mg/L苯酚废水,在实验用水量为1 000 mL,pH值为6,FeSO4·7H2O投加量为800 mg/L,H2O2投加量为Qth,超声时间为30 min的条件下,苯酚去除率可达到92.27%,COD去除率可达到82.48%,处理后苯酚浓度为14.80 mg/L,COD为83.50 mg/L。pH值、FeSO4·7H2O投加量、H2O2投加量和超声时间对超声/Fenton工艺处理苯酚废水均有较显著地影响,工程应用时应给予足够的重视。  相似文献   

7.
研究了用Fenton试剂处理选矿废水中残余的黄药,分别考查了氧化时间、反应初始pH值、Fe2+浓度及H2O2用量对黄药降解效果的影响,用正交试验确定了4个因素的最好条件。结果表明:初始pH值和H2O2用量是影响去除效果的主要因素;氧化时间为60 m in,反应初始pH=4,[Fe2+]=20 mg/L,[H2O2]=20 mg/L,黄药的浓度为125 mg/L时,黄药的去除率达到99.5%;初步探讨了Fenton试剂净化废水中黄药的机理是.OH自由基先将黄药氧化为过氧化黄原酸盐,再将其氧化为CO2,黄药得到去除。  相似文献   

8.
利用芬顿试剂(Fenton)氧化预处理杀螟丹农药废水,分别考察了H2O2与FeSO4·7H2O投加量、初始pH、反应时间、温度和摇床转速对Fenton试剂处理杀螟丹废水的影响。结果表明,杀螟丹废水初始COD为676.8 mg/L时,取废水样100 mL,优化反应条件为Fenton试剂的用量1 g FeSO4·7H2O+4 mL H2O2,初始pH值为3,搅拌强度为160 r/min 的摇床转速,反应温度25℃,反应时间60 min。在优化反应条件下COD的去除率达到83.9%。通过Fenton降解,废水可生化性BOD5/COD从0.0745~0.0747上升至0.9066~0.9228,可生化性大幅提高,为后续生化处理创造了条件。考虑到运用于工业废水处理中经济成本等实际问题,建议选取Fenton试剂的用量0.5 g FeSO4·7H2O+1 mL H2O2,COD去除效率能达到65.5%。  相似文献   

9.
以丙烯腈(AN)废水为研究对象,在正交实验基础上深入研究了Fenton反应体系中pH值、Fe2+浓度、H2O2浓度、温度、UV和C2O2-4对降解效果的影响,分析了不同因素作用机理,确定了最佳操作条件pH=3、[Fe2+]=400mg/L、[H2O2]=400mg/L、反应温度40℃,在此条件下丙烯腈降解率达80%以上。同时发现在紫外光、C2O2-4对Fenton试剂的协同作用下,降解率可提高10%左右。  相似文献   

10.
硫铁矿烧渣催化类Fenton法深度处理维生素C废水   总被引:1,自引:0,他引:1  
采用硫铁矿烧渣协同Fe2+催化H2O2的类Fenton法深度处理维生素C制药废水,通过正交实验考察FeSO4投加量、H2O2投加量、搅拌反应时间、曝气时间等因素对低浓度难降解有机物去除的影响程度,并结合单因素实验确定最佳反应条件。结果表明:(1)正交实验中,各因素对催化氧化反应效果的影响程度依次为H2O2投加量搅拌反应时间曝气时间FeSO4投加量;(2)单因素实验中,最佳反应条件为烧渣投加量10g/L、H2O2投加量4.9mmol/L、FeSO4投加量3.9mmol/L、搅拌反应时间20min、曝气时间20min、絮凝沉淀部分聚丙烯酰胺(PAM)投加量5mg/L。在此条件下,COD去除率最高达63.21%。  相似文献   

11.
采用快速Fenton反应器对乳化液废水处理效果进行研究。分别考察反应温度、H2O2和FeSO4投加量、反应时间、初始pH值等因素对COD去除率的影响,实验结果表明,在反应温度30℃,初始pH值4,反应时间20 min,H2O2浓度为116 mmol·L-1,Fe2+浓度为10 mmol·L-1条件下,COD平均去除率可达到60%。H2O2和FeSO4的用量是传统Fenton工艺的65%和10%,反应时间少于传统Fenton工艺的1/7。  相似文献   

12.
本实验研究了Fenton试剂法处理槟榔废水的工艺条件。基于Box-Behnken响应曲面法,考察了初始pH值、双氧水投加量、硫酸亚铁投加量和反应时间的单独作用和交互作用,并建立了TOC去除率数学模型。实验表明,在初始pH值为5,双氧水投加量为50 mg/L,硫酸亚铁投加量为12.5 g/L,反应时间为120 min,0.2% PAM加入量为0.2 mL时,整个反应过程对TOC去除率可达到64.1%。通过Box-Behnken 响应曲面可知,双氧水投加量、硫酸亚铁投加量的交互作用对TOC去除率有显著影响,其中双氧水投加量对TOC去除率的影响极显著。Fenton试剂处理槟榔废水最佳的工艺条件为: 双氧水投加量为54.2 mL/L,硫酸亚铁投加量12.55 g/L,初始pH值为4.98,反应时间为103.5 min。在此条件下TOC去除率为70.18%。  相似文献   

13.
以某环氧树脂生产厂产生的高盐有机废水为对象,对比研究了Fenton、Fenton-混凝、混凝-Fenton等工艺去除废水中有机污染物的效能。考察了Fenton反应中Fe2+、H2O2投加比、初始pH、反应时间以及混凝反应中混凝剂种类、投加量等参数对处理效果的影响。结果表明:Fenton工艺的最佳条件为亚铁和过氧化氢投加比1:20,投加量分别为25 mmol·L-1和500 mmol·L-1,初始pH 3,反应时间120 min,TOC去除率为62.50%;混凝工艺选择FeSO4混凝剂,投加量为300 mg·L-1,TOC去除率为23.78%;废水经过Fenton-无混凝剂混凝、Fenton-混凝剂混凝、混凝-一级Fenton氧化和混凝-二级Fenton氧化工艺处理,TOC去除率分别为68.32%、71.51%、80.69%和89.27%。  相似文献   

14.
以某电镀厂水回用系统产生的高盐有机废水为对象,对比研究了Fenton、UV-Fenton等工艺去除COD性能,考察了初始pH、H2O2投加量、Fe2+与H2O2摩尔比、反应时间等参数对处理效果的影响。结果表明:UV-Fenton工艺的最佳条件为初始pH=3.0,H2O2的投加量3 mmol/L,RFe2+:H2O2=1:1,反应时间30 min;在此条件下,COD去除率可达到60%以上,分别较Fenton和UV-H2O2工艺提高23.0%和39.3%。UV-Fenton工艺中,Fenton与UV表现出良好的协同效果,其处理效果较单独Fenton和单独UV处理效果之和高14.7%。UV的引入促进Fe(II)/Fe(Ⅲ)循环,可以提高·OH生成量以及Fe2+与H2O2利用率。UV-Fenton是处理高盐有机废水的可行工艺之一。  相似文献   

15.
为了探索络合态重金属废水的处理方法,采用UV/Fenton氧化技术处理EDTA-Cu-Ni模拟废水,主要研究了Fe2+投加量、H2O2投加量、初始pH和UV光照时间等因素对COD、Cu2+和Ni2+去除效果的影响及机理。结果表明,随着Fe2+和H2O2投加量以及初始pH的升高,COD、Ni2+的去除率先升后降,Cu2+的去除率则在升高后趋于稳定;随着UV光照时间的增加,COD、Cu2+、Ni2+去除效率均呈上升趋势并逐渐达到平衡。结合成本和效率考虑,得出最佳处理条件为:Fe2+投加量为10 mmol·L-1,H2O2投药量为600 mmol·L-1,反应初始pH为3.0,UV光照时间为120 min。在UV/Fenton体系中,UV光照能增强Fenton反应的去除效率,异丙醇对反应的抑制说明羟基自由基在处理过程中是重要的活性物种。  相似文献   

16.
建立数学模型分析UV-Fenton对金属切削液废水的降解   总被引:2,自引:0,他引:2  
采用UV/Fenton技术处理金属切削液废水,并通过正交实验和单因素实验得到了最佳工作条件为:pH=2.5,H2O2(浓度30%)投加量=127.5 mL/L,Fe2+投加量=24.8 mmol/L,总反应时间=3 h,投加次数6次,此条件下金属切削液废水COD去除率达到95%。最后,通过正交实验数据和单因素模型方程利用1st Opt进行多元非线性拟合建立UV/Fen-ton对金属切削液废水COD降解率的数学模型方程,然后进行分析讨论。  相似文献   

17.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对C0D去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30L/h、气体流量2.5L/h、转速800r/min、H2O2的投加量为1mmol/L及Fe2+投加量为0.4mm01/L的条件下,100mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。  相似文献   

18.
采用Fenton法处理湿法腈纶聚合废水,考察了H2O2投加量、Fe2+投加量、pH和反应时间等因素对氧化和混凝作用去除废水污染物的影响,并分析了废水可生化性和特征污染物的变化。结果表明,Fenton法可以有效去除废水中有机污染物,在初始pH为3.0,Fe2+投加量为15.0 mmol/L,H2O2投加量为90.0 mmol/L的条件下,反应120 min后废水COD去除率可以达到56.8%,其中氧化和混凝作用对应的去除率分别为43.3%和13.5%;处理后废水的BOD5/COD由0.24升高至0.43;处理后废水中丙烯腈以及其他多数有机污染物能被有效去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号