首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Reza J  Trejo A  Vera-Avila LE 《Chemosphere》2002,47(9):933-945
An improved dynamic coupled column liquid chromatographic (DCCLC) technique for determining water solubility data of hydrophobic compounds is presented. The technique is based on pumping water through a thermostated generator column in order to generate emulsion-free, saturated aqueous solutions of the compound under study. Through a switching valve system the solute in the aqueous solution is extracted and concentrated by an on-line solid-phase extraction process and subsequently eluted and analyzed by high performance liquid chromatography (fluorescence detection coupled to photodiode array detection). The improvements carried out to the original DCCLC technique have given rise to savings in time for the experimental work and increased sensitivity during the detection and quantification stage. Applicability of the method for studying highly hydrophobic substances is demonstrated by determining water solubility of anthracene and pyrene in the temperature range of 8.9-49.9 and 8.5-32.2 degrees C, respectively. The measured water solubilities are in good agreement with the best available literature data. The method has also been applied to the determination of water solubility of m-terphenyl, 9, 10-dihydrophenanthrene and guaiazulene, in the temperature range of 4.8-49.9, 4.8-25.0, and 4.5-29.9 degrees C, respectively. The uncertainty in the Sw values determined in this work ranged from 0.7% to 4.6%. The experimental water solubility data, as a function of temperature, are fitted to the equation In Sw = A + B/T; where Sw and T are given in mole fraction and Kelvin, respectively.  相似文献   

2.
The behavior of several hydrophobic organic compounds (HOCs) in water at concentrations close to and above their maximum solubility values was studied. For this purpose, solutions of benzene, toluene, xylene, trichloroethylene (TCE) and a mixture of them were prepared in excess in freshwater and in saltwater, and solution stability was examined. High organic concentrations were found to remain stable in both freshwater and saltwater. In saltwater, for example, toluene and xylene concentrations remained as high as 14 and 26 times their solubilities, respectively, over a period of 6 days, while in freshwater, their concentrations remained 8 and 30 times their solubilities over the same period. This phenomenon is attributed to the presence of stable organic droplets, which were observed using optical microscopy. In addition, the transport of HOC droplets through sand is demonstrated, using an experimental system consisting of a saltwater source reservoir connected by a porous inactive sand layer to a freshwater collector reservoir.  相似文献   

3.
《Chemosphere》1987,16(1):133-142
The logarithm of the capacity factor of several organic compounds determined by reversed-phase high performance liquid chromatography on a commercially available C18 column is shown to be linearly related to the logarithm of the n-octanol/water partition coefficient. Calculated values for test compounds show good agreement with literature values.  相似文献   

4.
Sulfides are known for their strong odor impact even at very low concentrations. Here, we report Henry’s law constants (HLCs) measured at the nanomolar concentration range in water for monosulfides (dimethylsulfide, ethylmethylsulfide, diethylsulfide, allylmethylsulfide) and disulfides (dimethyldisulfide, diethylsulfide, dipropylsulfide) using a dynamic stripping technique coupled to Proton Transfer Reaction-Mass Spectrometry (PTR-MS). The experimental data were compared with literature values and to vapor/solubility calculations and their consistency was confirmed employing the extra-thermodynamic enthalpy-entropy compensation effect. Our experimental data are compatible with reported literature values, and they are typically lower than averaged experimental literature values by about 10%. Critical comparison with other freely available models (modeled vapor/solubility; group and bond additivity methods; Linear Solvation Energy Relationship; SPARC) was performed to validate their applicability to monosulfides and disulfides. Evaluation of theoretical models reveals a large deviation from our measured values by up to four times (in units of M atm−1). Two group contribution models were adjusted in view of the new data, and HLCs for a list of sulfur compounds were calculated. Based on our findings we recommend the evaluation and adaption of theoretical models for monosulfides and disulfides to lower values of solubility and higher values of fugacity.  相似文献   

5.
A ring test by 19 labolatories in Japan was carried out in 1984 for the evaluation of the experimental manuals for the measurements of water solubility and partition coefficient (n-octanol/water). The experimental data obtained by the procedures in the manuals were collected by Environmental Agency, Japan. In the measurement of water solubility, this manual applies a modified batch method (the glass beads technique), whereas the OECD Test Guidelines suggests the use of the column elution method for chemicals having water solubility lower than 10 mg/L. Anthracene and flouranthene were used as test chemicals for the measurement of water solubility, and γ -hexachlorocyclohexane (γ -HCH) and 1,2,3-trichlorobenzene were used for partition coefficient. Good agreements were observed at a practical basis between the OECD methods and our methods for the results of mesurements of water solubility and partition coefficient. We concluded that the present ring test showed an advantage of the use of the glass beads method which requires only simple apparatus in water solubility measurement, and the HPLC method is very useful to measure partition coefficient because of the simplicity of procedure and the wide range of measurement, especially at higher values of partition coefficient.  相似文献   

6.
Cosolvent flushing is a technique that has been proposed for the removal of hydrophobic organic contaminants in the subsurface. Cosolvents have been shown to dramatically increase the solubility of such compounds compared to the aqueous solubility; however, limited data are available on the effectiveness of cosolvents for field-contaminated media. In this work, we examine cosolvent flushing for the removal of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured gas plant (FMGP). Batch studies confirmed that the relationship between the soil-cosolvent partitioning coefficient (K(i)) and the volume fraction of cosolvent (f(c)) followed a standard log-linear equation. Using methanol at an fc of 0.95, column studies were conducted at varying length scales, ranging from 11.9 to 110 cm. Removal of PAH compounds was determined as a function of pore volumes (PVs) of cosolvent flushed. Despite using a high f(c), rate and chromatographic effects were observed in all the columns. PAH effluent concentrations were modeled using a common two-site sorption model. Model fits were improved by using MeOH breakthrough curves to determine fitted dispersion coefficients. Fitted mass-transfer rates were two to three orders of magnitude lower than predicted values based on published data using artificially contaminated sands.  相似文献   

7.
Background, aim and scope  Glass wools are man-made vitreous fibres, which consist principally of sodium, calcium and magnesium silicates, but may contain smaller amounts of other elements, including boron. The boron contents originate from the use of borates in the glass melting process as a glass former and a flux agent. During the production and application of glass wool insulation products, workers may legally be exposed to glass fibre up to the occupational limit value, commonly of 1 fibre/cm3. However, in practice, the fibre exposure will be at least ten times lower. Boron is a non-metallic element widely distributed in nature, where it occurs as boric acid, borates and borosilicates. Humans are mainly exposed to boron via vegetarian food and drinking water, mineral supplements and various consumer products. Boron is an essential element for plant growth, but the essentiality for humans is not proven, although intakes of trace amounts of the element seem to be useful for bone health and proper brain function; higher concentrations of boron, however, may be toxic. In relation to the European Union legislation on dangerous substances, an EU Expert Group has recommended classifying boric acid and borates with risk phrases for reproductive toxicity. The aim of this paper is to assess whether the new EU hazard classification of boron compounds should imply that glass wool products used for building insulation in the future should be labelled, “may impair fertility and cause harm to the unborn child”, because of the low boron content. Materials and methods  Boron intakes are estimated in a worst-case occupational situation with human exposure to glass wool fibres at the occupational limit of 1 fibre/cm3 by calculation of the mass of the amount of fibres inhaled during an 8-h work day. Fibres are supposed to be cylinders of glass with a length of 30 μm, an average diameter of 1.5–2 μm and containing either 1.5% or 3.5% boron. As a worst-case scenario, the density of the fibres is set to 2,700 kg/m3. The inhalation rate of the individuals at moderate work load was set to 2 m3/h. A worst-case scenario also corresponds to 100% retention and to 100% solubility of the retained fibres in the lungs. Results  With the normal boron content of 1.5% in glass wool fibres for building insulation, the extra daily occupational boron intake/uptake will be 0.03–0.06 mg B for 5 days a week. For more uncommon glass wool with maximum boron content of 3.5%, the worst-case daily boron intake/uptake will be 0.08–0.16 mg B. The main boron exposure in the general population is from vegetarian food, and the average daily dietary intake with food is estimated to 1.2–1.5 mg B/day. In addition, significant intakes may come with drinking water, especially from mineral water. In some instances, exposure from mineral supplements, cosmetics and other consumer products may be significant. For example, individuals taking mineral supplements, e.g. for bodybuilding, may have an additional intake to that of 1–10 mg/day. During the years, various organisations have recommended safe intake values for boron. Recently, the Scientific Panel on Dietetic Products, Nutrition and Allergies of the European Food Safety Authority (EFSA) has established the ‘Tolerable Upper Intake Level’ (UL) for the intake of boron (boric acid and borates) at 0.16 mg B/kg body weight per day or about 10 mg B/day for an adult. Discussion  The calculated, worst-case exposure scenario during an 8-h work day will result in an extra daily boron intake that only corresponds to about 10% of the average daily adult boron intakes through food and drinks of about 1.5 mg. The inter-individual variations in boron intakes from foods, water and supplements will be much greater than an eventual, very worst-case, additional intake of boron from inhalation of glass wool fibres. In addition, the combined intakes are far lower than the ‘Tolerable Upper Intake Level’ of 10 mg B/day for a person weighing 60 kg, as recommended by the European Food Safety Agency. The potential boron intake from inhalation of glass wool fibres is also much lower than boron intakes by workers in the boron industry, who at the present occupational limit value will be exposed to 50 mg of boron 5 days a week, or 100 times more than the worst case for glass wool fibres. Furthermore, in practice, exposure levels will mostly be ten to 100 times lower than the occupational limit used here as a worst case. Conclusions  The estimated boron intake from inhalation of glass wool fibres in occupational settings will be insignificant and without any health risks, even in the case of non-compliance with the occupational limit value. Any proposal requiring hazard labels on commercial glass wool products for building insulation, because of the boron content, is not supported by the present scientific knowledge. Recommendations and perspectives  The European Commission should ensure that the new EU hazard classification of boron compounds is not applied to commercial glass wool products for building insulation having a low content of boron.  相似文献   

8.
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.  相似文献   

9.
Reduction in the surface tension of groundwater, prior to air sparging for removal of volatile organic contaminant from aquifer, can greatly enhance the air content and the extent of influence when air sparging is implemented. However, detailed information on the functional relationship between water saturation, air-water contact area induced by air sparging and the surface tension of water has not been available. In this study, the influence of adding water-soluble anionic surfactant (sodium dodecyl benzene sulfonate) into groundwater before air sparging on the air-water interfacial area and water saturation was investigated using a laboratory-scale sand packed column. It was found that water saturation decreases with decreasing surface tension of water until it reaches a point where this trend is reversed so that water saturation increases with further decrease in the surface tension. The lowest water saturation of 0.58 was achieved at a surface tension of 45.4 dyn/cm, which is considered as the optimum surface tension for maximum de-saturation for the initially water-saturated sand used in this study. The air-water contact area generated in the sand column due to air sparging was measured using a gaseous interfacial tracer, n-decane, and was found to monotonically increase with decreasing water saturation. The results of this study provide useful design information for surfactant-enhanced air sparging removal of volatile contaminants from aquifers.  相似文献   

10.
Liquid aqueous solubility (S(w,L)), octanol/water partition coefficients (K(ow)), liquid vapor pressure (P(v,L)), and Henry's law constants (H(c)) were estimated for 20 methylated naphthalenes ranging from monomethyl to tetramethylnaphthalenes. Chromatographic methods were used for the estimation. Chromatographic retention measurements were conducted for 11 reference compounds and regressions were fit between the retention indices and the physicochemical properties. HPLC octadecylsilyl column with acetonitrile/water eluent was used for the estimation of S(w,L) and K(ow). Two GC columns, HP5-MS and a more hydrophobic HP-1, were tested for the estimation of P(v,L). Measured retention indices for the methylated naphthalenes were entered to the regression equations to calculate the physicochemical properties for these compounds. Literature values, where available, were used to validate the calculated values. The method accurately estimated the physicochemical properties. Estimated S(w,L) and P(v,L) decreased with the number of methyl groups. K(ow) increased with the number of methyl groups. There was no obvious relation between H(c) and the number of methyl groups. Log S(w,L) ranged from 0.885 for 1,2,5,6-tetramethylnaphthalene to 2.269 for 1-methylnaphthalene (mmol/m(3)). Log K(ow) varied from 3.89 for 1-methylnaphthalene to 4.95 for 1,2,5,6-tetramethylnaphthalene. Log P(v,L) ranged from -0.983 for 1,2,5,6-tetramethylnaphthalene to 0.789 for 2-methylnaphthalene (Pa). Log H(c) varied from 1.03 for 1,4,5-trimethylnaphthalene to 1.73 for 2,6-dimethylnaphthalene (Pa m(3)/mol). There were no apparent effects of GC column hydrophobicity on the accuracy of the results. Estimation of S(w,L) and K(ow) based on GC retention indices was not as accurate as with HPLC. Comparison of the estimated values with values predicted by EPIWIN indicated that EPIWIN is useful in giving order-of-magnitude prediction of physicochemical properties.  相似文献   

11.
In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.  相似文献   

12.
Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.  相似文献   

13.
The solubility in pure and saline water at various temperatures was calculated for selected nitro compounds (nitrobenzene, 1,3,5-trinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,3-dinitrotoluene, 3,4-dinitrotoluene, 2,4,6-trinitrotoluene) using the Conductor-like Screening model for Real Solvents (COSMO-RS). The results obtained were compared with experimental values. The COSMO-RS predictions have shown high accuracy in reproducing the trends of aqueous solubilities for both temperature and salinity. The proposed methodology was then applied to predict the aqueous solubilities of 19 nitro compounds in the temperature range of 5-50 °C in saline solutions. The salting-out parameters of the Setschenow equation were also calculated. The predicted salting-out parameters were overestimated when compared to the measured values, but these parameters can still be used for qualitative estimation of the trends.  相似文献   

14.
Reza J  Trejo A 《Chemosphere》2004,56(6):537-547
The water solubility of 9,10-dihydroanthracene was experimentally determined between 278.12 and 313.17 K. Determinations were carried out by an experimental procedure developed in our laboratory, which is a modification of the dynamic coupled column liquid chromatographic technique. The uncertainty of the experimental determinations ranged from +/- 0.50% to +/- 3.10%. These data, as well as the water solubility data of other five polycyclic aromatic hydrocarbons (PAHs) previously studied, were used to calculate the temperature dependence of the infinite dilution activity coefficient of 9,10-dihydroanthracene, anthracene, pyrene, 9,10-dihydrophenanthrene, m-terphenyl, and guaiazulene in water. Molar excess enthalpies and entropies at infinite dilution, at 298.15 K, were also derived. The temperature dependence of the infinite dilution activity coefficients was used, together with literature values of the vapor pressures of supercooled liquid PAHs (p(B)(sc)), to estimate their Henry's law constants (HLC). Only HLC for anthracene, pyrene, and 9,10-dihydrophenanthrene were calculated, since no p(B)(sc) data were available in the literature for 9,10-dihydroanthracene, m-terphenyl, and guaiazulene. From the observed temperature dependence of the Henry's law constants the enthalpy and entropy of the phase change from the dissolved phase to the gas phase were also derived for anthracene, pyrene, and 9,10-dihydrophenanthrene.  相似文献   

15.
Abstract

The carbon adsorption method was used for separating organic matter from large samples of drainage, river and tap water. The carbon chloroform extract (CCE) was separated into different solubility fractions and the neutral fraction was separated into aliphatic, aromatic and oxy‐compounds using column chromatography. The aromatic fraction was subjected to TLC, IR and UV analysis. The pesticide endrin was present in both river and tap water at concentrations of 0.7 and 1.5 ppb, respectively.  相似文献   

16.
Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the "quantity" of species whereas pollutants control the "quality" of them.  相似文献   

17.
Results of a laboratory study indicate that the rate of solution of atmospheric sulfur dioxide in distilled water, over the range of atmospheric concentrations of 0.81?8.73 mg SO2/M3, is a function of the concentration of SO2 in the atmosphere, with saturation being reached more rapidly at the higher concentrations. This would indicate that rain water, with constantly renewed surfaces, can be very effective in the removal of atmospheric SO2. The pH of the exposed water samples reached values of 4.0 or less, comparable to values observed in fog and cloud water near large industrial areas. Overall solubility of sulfur dioxide in distilled water did not follow the law of partial pressure. At the atmospheric concentrations used it was found that over 98.5% of the sulfite in solution was in the form of the bisulfite ion with, the remainder present as unionized sulfurous acid. Computations using the concentration of unionized sulfurous acid in the solution showed that the solubility of this portion of dissolved sulfite did follow the law of partial pressure.  相似文献   

18.
The logarithm of the partition coefficients in the n-octanol-water system, log P, of 21 chlorinated phenols, guaiacols and catechols are determined, by both shake-flask gas chromatography (GC) and high pressure liquid chromatography (HPLC). In the shake-flask GC method, the water phase, after equilibration with spiked octanol, was analysed by glass capillary GC with electron capture detection. The relative responses of individual phenols were compared with those from before partition, and the partition coefficients were calculated. In the HPLC method, the capacity factors were used for calculating the log P values by calibration using four chlorophenols with known log P values. The use of short columns with 3 μm packing materials, combined with amperometric detection, offers fast and sensitive determinations.The results from both these methods have high precision, and agree well with the values calculated according to Hansch (1). The small deviations between the results obtained by shake-flask GC and HPLC for the compounds which have high dipole moments can be explained by the influence of different dipole moments and hydrogen bonding affinities in the solute-solvent and solute-stationary phase interactions. Compared with these interactions, the salt effect for concentrations lower than 1 M sodium chloride is negligible.  相似文献   

19.
Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively. Natural sand (diameter, 0.3-2 mm), mainly constituted of silica, was used. In batch adsorption experiments, zinc adsorption is insignificant at pH 4, low and linear at pH 5, and increasingly nonlinear, of the Langmuir type, at pH 6 and 7 indicating near-saturation conditions of surface sites at these high pH values. In column experiments, Zn retardation increases and the maximum outlet concentration of Zn decreases with rising pH and acetate concentrations. Previous column tracer experiments revealed the occurrence of regionalized water transport in the column. Modeling these data was based on a non-electrostatic approach. Batch and column data modeling was based on the PHREEQC code that allows concomitant resolution of chemical speciation and regionalized water transport. The speciation calculation indicates that the ZnAcetate+ species is the dominant Zn species in the solutions used. Batch experimental curves are correctly modeled assuming the formation of the three surface species triple bond SiOZn+, triple bond SiOH-Zn Acetate+ and triple bond SiO-Zn(Acetate)2-. The column data could be adequately modeled assuming a two-region water transport and the formation of the same three species with the same thermodynamic constants determined in the batch experiments. The hypothesis of the modeling leads to a slight overestimation of the quantities of zinc eluted (10%) at pH 6 and 7, mostly in the desorption phase. These results show that the methodology used facilitates the correct modeling of both batch and transport experiments and formulation of the hypothesis on the interactions between the low reactive sand and a complex solution.  相似文献   

20.
The effect of water content on the volatilization of nonaqueous phase liquid (NAPL) in unsaturated soils was characterized by one-dimensional venting experiments conducted to evaluate the lumped mass transfer coefficient. An empirical correlation based upon the modified Sherwood number, Peclet number, and normalized mean grain size was used to estimate initial lumped mass transfer coefficients over a range of water content. The effects of water content on the soil vapor extraction SVE process have been investigated through experimentation and mathematical modeling. The experimental results indicated that a rate-limited NAPL-gas mass transfer occurred in water-wet soils. A severe mass transfer limitation was observed at 61.0% water saturation where the normalized effluent gas concentrations fell below 1.0 almost immediately, declined exponentially from the initiation of venting, and showed long tailing. This result was attributed to the reduction of interfacial area between the NAPL and mobile gas phases due to the increased water content. A transient mathematical model describing the change of the lumped mass transfer coefficient was used. Simulations showed that the nonequilibrium mass transfer process could be characterized by the exponent beta, a parameter which described the reduction of the specific area available for NAPL volatilization. The nonequilibrium mass transfer limitations were controlled by the soil mean grain size and pore gas velocity, were well described by beta values below 1.0 at low water saturation, and were well predicted with beta values greater than 1.0 at high water saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号