首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为研究零价铁(Fe0)通过电子转移对过硫酸盐(PS)降解分散剂木质素磺酸钠(SL)能力的影响,以SL作为目标污染物,对影响SL降解的因素(初始pH值、SL初始质量浓度、PS浓度、Fe0投加量)及降解机理进行探讨.结果表明,1)当pH值小于2时,SL降解率随pH值升高而升高;当pH值在2~5时,SL降解率随pH值升高而降低.当PS浓度在2~4 mmol/L时,SL的降解率随PS浓度的增大而增大;当PS浓度超过4 mmol/L后降解率呈现下降趋势.当固定其他反应条件时,SL的降解率随SL初始质量浓度的升高而降低.2)相比于单一 Fe0体系和单一 PS体系,Fe0-PS体系对SL的降解率有显著提高,对含SL废水可生化性有所改善.在最佳反应条件下(pH值为2,Fe0投加后质量浓度为0.3 g/L,SL初始质量浓度0.5 g/L,PS浓度为4 mmol/L),180 min内SL的降解率能达到75.9%.3)Fe0活化PS产生SO4-·,通过自由基淬灭剂进行淬灭试验,确定降解过程中的SO4-·与·OH为体系活性物质.4)通过红外吸收光谱扫描,比较SL与反应产物的FTIR图谱,推测在氧化作用下,SL的苯环结构断裂,部分磺酸基团被氧化为SO4-.研究表明,Fe0-PS体系与单一 Fe0体系和单一 PS体系相比,Fe0能有效活化PS产生SO4-·,进而对SL有更好的降解效果.  相似文献   

2.
为了绿色且高效地治理多环芳烃萘污染地下水,采用高铁酸钾-过硫酸钠体系降解萘,考察高铁酸钾和过硫酸钠的摩尔比、pH值和温度对萘降解效果的影响,并探究反应动力学和降解机理。研究显示,当温度为25℃,pH值为5.0,高铁酸钾和过硫酸钠的摩尔比为1∶2时,在50 min时萘最佳降解率为82.3%。采用一级反应动力学方程对萘的降解曲线进行拟合,发现其反应速率k为0.030 2 min-1,远高于高铁酸钾体系的0.007 4 min-1和过硫酸钠体系的0.003 4 min-1的总和,表明高铁酸钾-过硫酸钠体系存在协同作用。通过对高铁酸钾-过硫酸钠体系中Fe(Ⅱ)和Fe(Ⅲ)质量浓度变化测定,显示该体系可以活化过硫酸钠且Fe(Ⅱ)和Fe(Ⅲ)质量浓度变化与萘的降解试验结果吻合。采用自由基猝灭试验和电子顺磁共振(Electron Paramagnetic Resonance, EPR)技术探究高铁酸钾-过硫酸钠体系中的活性氧化物种,发现羟基自由基(·OH)和硫酸根自由基(·SO-4)都参与了...  相似文献   

3.
含硫油品储罐危险性研究   总被引:2,自引:2,他引:0  
考察不同铁氧化物经过不同时间硫化后生成的FeS的氧化性.氧化性越高,给储罐带来的危险性越大.实验结果表明,氧化倾向及危险性与硫化时间有关,并与FeS的生成方式有关.同一铁氧化物分别经0.5 h和6 h硫化后,后者硫化产物的氧化性要大.这是因为经长时间硫化,H2S气体不仅与表面颗粒分子发生完全反应,而且大量的H2S分子扩散到颗粒的内部,与铁氧化物内部分子充分接触发生反应,即硫化程度较完全,生成较多的FeS.同时说明,硫化时间越长,对储罐构成的威胁越大.经6 h硫化后产物的氧化倾向从高到低依次为Fe2O3、Fe3O4和Fe(OH)3生成的硫化产物.  相似文献   

4.
对Fe(III)单独沉淀、Fe(II)单独沉淀、Ce(IV)单独沉淀、Fe(III)-Ce(IV)和Fe(II)-Ce(IV)共沉淀5种制备体系产物去除As(V)性能进行了比较,结果显示Fe(II)-Ce(IV)体系最优.进一步优化评价Fe(II)-Ce(IV)制备体系中铈的加入量.基于经济-性能平衡的考虑,优选得到了Fe(II)-Ce(IV)体系中Ce(IV)加入量为0.03 mol/L的吸附剂Fe(II)-Ce(IV)03(简称FC),其饱和吸附容量达到85 mg/g.动力学测试表明,FC去除As(V)过程符合准二级反应动力学过程.在pH=4~7范围内,吸附容量受pH值影响不明显.对FC材料造粒后的吸附剂颗粒进行再生寿命评价,批量试验结果显示其能够重复利用7次.颗粒柱试验结果表明,在空间流速(SV)分别为10 h-1、20 h-1、30 h-1时,出水砷穿透前(>10 μg/L)分别对应4 000、2 400、2 160倍的倍柱体积处理量.对FC材料进行的表征测试显示,FC呈无定形结构,其质子位密度为9.97个/nm2,质子化常数pK1=3.09,pK2=-10.02.  相似文献   

5.
采用所制备的Cu_(0.0183)Ti_(0.9817)O_2光催化降解BDE-209,ln[n(Br~-)]_0/ln[n(Br~-)]~t呈显著线性关系,遵循一级反应动力学,且20 min后BDE-209完全被去除。由Br~-随催化时间推测BDE-209降解过程为:BDE-209在初始发生自由基反应,游离Br~-生成较少;40~60 min之后,不断被降解脱溴,推测生成小分子溴代物。随着时间的增加,产生的Br~-摩尔比大致呈增加趋势;同时对反应过程推测,随着溶液中Br~-数量的不断增多,其Br~-生成速率随时间的增加而降低。因此,Cu_(0.0183)Ti_(0.9817)O_2可高效降解BDE-209和实现逐级脱溴。  相似文献   

6.
以Ti/SnO2 - Sb2O5为阳极,石墨为阴极研究了苯胺的电化学氧化降解.在阳极氧化的基础上,通过外加Fe2+实现了阳极氧化与电Fenton氧化协同降解苯胺.结果表明,不存在Fe2+时,中性介质和高阳极电位有利于提高苯胺去除率.苯胺被阳极氧化降解的同时,-0.65 V和酸性介质条件下石墨阴极具有良好的还原O2生成H2O2的性能.在pH=3.0和-0.65 V阴极电位条件下,电化学反应600min,H2O2的累计质量浓度达到110 mg·L-1.引入Fe2+后,苯胺降解效果和电流效率得到大幅度提高.在阴极电位为-0.65 V,pH值为3.0,初始Fe2浓度为0.50 mmol· L-的条件下,处理180 mg·L-1苯胺水溶液(Na2SO4为支持电解质)600 min,苯胺去除率达100%,COD去除率为78%.因此,使用恰当的电极材料,控制合理的电极电位,可以实现双极电化学氧化降解水中有机物,并且获得较高的电流效率.  相似文献   

7.
为了快速检测Fenton试剂氧化降解瓦斯反应体系中生成的羟基自由基(·OH),提出了一种苯甲酸荧光法测定·OH含量的方法。Fenton试剂产生的·OH能与苯甲酸反应生成具有强荧光的羟基苯甲酸,利用荧光强度的变化可间接测定反应体系中·OH的含量,系统研究了H2O2浓度、Fe2+浓度、初始pH值等因素对·OH产生效率的影响。结果表明,H2O2浓度、Fe2+浓度、初始pH值是影响Fenton试剂产生·OH的主要因素,当c(H2O2)=100 mmol/L、c(Fe2+)=2.0 mmol/L、pH=2.5时,溶液荧光强度F最大,同时Fenton试剂降解瓦斯反应体系的·OH生成量最大。  相似文献   

8.
含硫油品储罐腐蚀产物自燃及其防治理论研究   总被引:1,自引:0,他引:1  
含硫油品储罐内壁腐蚀产物(Fe2O3、Fe3O4、Fe(OH)3)与H2S反应生成硫化铁,硫化铁的氧化放热是引起储罐火灾的主要原因.实验模拟了油品储罐中硫化铁的生成,研究了在无氧条件下H2S气体与油品储罐内壁腐蚀产物的反应以及生成的硫化铁在自然环境下的氧化自燃性.结果表明,Fe2O3、Fe3O4、Fe(OH)3,以及它们的混合物经硫化后生成的硫化铁具有很高的自然氧化活性,在自然环境中,常温下能迅速和空气中的氧气反应并放出大量的热,热量积聚引起储罐火灾爆炸事故.在实验结论的基础上,提出了一些行之有效的安全防范措施.  相似文献   

9.
贫化铜渣的特性分析   总被引:1,自引:0,他引:1  
铜渣是有色金属火法炼铜过程中产出的固体废弃物.通过化学分析、XRD衍射、SEM-EDS和热重等分析铜渣的特性.铜渣主要成分是赤铁矿(α-Fe203)、铁橄榄石(Fe2SiO4)、磁铁矿(Fe3O4)和非晶态硅石,并含有铜及少量镍、钴等有价组分.铁橄榄石和磁铁矿约占总渣量的90%.冷却方式影响渣中铁橄榄石的形成,空冷渣中铁橄榄石的比例明显高于水淬铜渣中的铁橄榄石含量.磁铁矿以多边状、树枝状、放射状结构存在于硅酸盐基体中;铁橄榄石呈柱状、板状、树突状颗粒存在于炉渣基体中;铜矿物或被硅铁氧化物所包裹,或与铜铁矿物共同形成斑状结构及多矿物共生嵌于铁橄榄石基体中.铜渣中铁橄榄石组分首先在491~1 173℃之间氧化转变为赤铁矿和非晶态硅石,其次是磁铁矿发生Fe3O4→γ-Fe2O3→α-Fe2O3的晶型转变过程.加热可以使铁橄榄石、铜和铁的硫化物及磷化物发生氧化反应.  相似文献   

10.
针对Fe(Ⅱ)/过二硫酸盐(Peroxydisulfate, PDS)高级氧化技术存在的pH值应用范围窄、铁泥产量大等缺陷,研究构建Fe(Ⅲ)-氨三乙酸(Nitrilotriacetic Acid, NTA)/羟胺(Hydroxylamine, HAm)/PDS体系,以在中性条件下高效降解水中新污染物磺胺甲恶唑(Sulfamethoxazole, SMX)。研究结果显示,Fe(Ⅲ)-NTA/HAm/PDS体系在pH=7条件下对SMX的降解率可达91%,该体系降解SMX的主要活性物种为·SO4-和·OH。SMX在Fe(Ⅲ)-NTA/HAm/PDS体系中的降解效率随溶液pH值的升高而降低,且增加Fe(Ⅲ)、PDS的用量会加速SMX降解。NTA的引入可将Fe(Ⅱ)/PDS体系的pH值应用范围由酸性拓展至弱碱性,与此同时,向体系内加入HAm可有效减少铁泥的产量。根据检测到的降解产物,提出SMX在Fe(Ⅲ)-NTA/HAm/PDS体系中可能的降解途径包括断键反应、羟基化反应、氨基氧化反应。双酚AF、双氯芬酸、土霉素等其他新污染物也能在Fe(Ⅲ)-NTA...  相似文献   

11.
异相Fenton试剂-光协同催化降解五氯酚钠的研究   总被引:1,自引:1,他引:0  
在Fenton试剂-光催化氧化降解五氯酚钠过程中,由于Fe(Ⅲ)/Fe(Ⅱ)水解,导致光效率降低,五氯苯酚分析困难,并在废水处理过程中引入了新的污染.为了解决这些问题,将Fe(Ⅱ)、Fe(Ⅲ)分别固载到LS-5000螯合树脂上,与H2O2一起构成异相Fenton试剂,进行五氯酚钠的Fenton试剂-光协同催化氧化降解研究.单因素试验表明,光照时间、H2O2质量浓度、载Fe(Ⅱ)/Fe(Ⅲ)螯合树脂用量、PCP-Na初始浓度对五氯酚钠降解率均有影响.正交试验获得降解五氯酚钠的最佳工艺条件为: 0.2 g载铁(Ⅱ)螯合树脂、24 μg/mL H2O2、16 μg/mL五氯酚钠以及150 min紫外光光照.影响降解的因素按强度由大到小的次序为光照时间、载铁(Ⅱ)螯合树脂质量、五氯酚钠初始质量浓度和H2O2质量浓度.Na+、K+、Mg2+、Cl-和SO2-4等50倍于五氯酚钠质量浓度时,五氯酚钠降解率变化值小于等于±5%.  相似文献   

12.
五氯苯酚的降解研究进展   总被引:5,自引:0,他引:5  
综述了近年来我国在五氯苯酚(PCP)降解研究中取得的进展,并对五氯苯酚的化学与生物降解法进行了评述.在化学降解法中着重讨论了光催化降解和辐射降解,对比了常用光催化技术(UV,UV/H2O2,UV/H2O2/Fe(Ⅱ/Ⅲ),UV/TiO2)和辐射技术对PCP的降解效率及其影响因素,分析了其降解产物和降解机理.化学降解主要为自由基氧化降解,五氯苯酚在HO·、·O2-等自由基作用下,逐步脱氯生成多酚或醌,然后开环矿化.在微生物降解法中,综述了降解PCP微生物的筛选,论述了PCP在好氧和厌氧条件下的降解过程.五氯苯酚的生物降解路径为:好氧条件下,五氯苯酚在氢氧化酶作用下,被氧化生成氯代醌,并逐步脱去所有的氯原子,生成苯酚后开环;在厌氧和缺氧条件下,五氯苯酚还原脱氯,在得到电子的同时,脱掉一个氯取代基,最终矿化为CH4和CO2.PCP的降解研究对讨论其在环境中的迁移、转化以及含酚废水的处理具有重要意义.  相似文献   

13.
超声波/零价铁联合降解间二氯苯的特性研究   总被引:1,自引:0,他引:1  
研究了间二氯苯(M-DCB)在超声波/零价铁联合体系(US/Fe0)中的降解,考察了零价铁(Fe0)投加量、初始pH值、初始间二氯苯浓度(C0)、搅拌速度等控制参数对间二氯苯降解效率的影响。结果表明,其降解效率分别在Fe0投加量1.5 g/L,初始pH值为2和10时达最大值。随目标污染物初始浓度的提高,其降解效率降低,超声波和零价铁联合体系适合降解较低浓度的间二氯苯溶液,搅拌速度越大,污染物的去除率越高。  相似文献   

14.
不同晶型铁氧化物Fenton和UV-Fenton降解橙Ⅱ的催化性能   总被引:1,自引:0,他引:1  
选取了磁铁矿、赤铁矿和针铁矿3种不同晶型的铁氧化物,用XRD和BET进行了表征。将3种铁氧化物作为催化剂用于Fenton和UV-Fenton(254 nm UVC)降解偶氮染料橙II,测定了染料降解过程中溶液中铁离子浓度的变化规律,用于分析3种铁氧化物的催化过程。用单位比表面积反应速率常数(k/Ssur)评价了3种铁氧化物UV-Fenton催化降解橙Ⅱ的能力,以揭示UV-Fenton体系中铁氧化物晶型与催化性能的关系。结果表明,Fenton体系中,磁铁矿能通过表面固有的2价铁催化产生羟基自由基降解橙Ⅱ,其催化能力高于针铁矿和赤铁矿;UV-Fenton体系中,磁铁矿、赤铁矿和针铁矿催化降解橙Ⅱ的单位比表面积反应速率常数分别为0.048 8 g/(m2·min)、0.023 4 g/(m2·min)和0.001 0 g/(m2·min),可见磁铁矿的催化能力明显高于针铁矿和赤铁矿;UV-Fenton体系中,磁铁矿以多相反应为主,针铁矿以均相反应为主,而赤铁矿则是两者共同作用。研究表明,磁铁矿是多相铁氧化物UV-Fenton催化剂的理想晶型,同时也是合成新型多相光助-芬顿催化剂理想的活性组分。  相似文献   

15.
选用黄钾铁矾作为类芬顿催化剂催化H_2O_2对废水中的吲哚进行处理,并采用XRD与XPS对黄钾铁矾进行表征分析。考察了该反应体系pH值、黄钾铁矾投加量、H_2O_2浓度以及无机阴离子等对去除效果的影响,并研究了其反应机制。结果表明:黄钾铁矾投加量2 g/L,H_2O_2浓度1 000 mg/L,pH=2.70的条件下吲哚的去除效果好,降解率可达78%,NO~-_3与SO_4~(2-)对吲哚的去除有抑制作用。通过甲醇淬灭实验证实了吲哚的降解过程中起主要作用的为羟基自由基。。  相似文献   

16.
采用Fe(Ⅱ)活化过硫酸盐,产生强氧化性硫酸根自由基(·SO_4~-),探讨不同过硫酸盐、硫酸亚铁、柠檬酸溶液的初始浓度及pH值对水相中芘降解率的影响,从而得到水相中芘降解的最佳配比,同时据此配比进行土壤中芘的降解实验。结果表明,水相中柠檬酸浓度∶Fe~(2+)浓度∶过硫酸盐浓度∶芘的摩尔浓度比为20∶200∶400∶1时,过硫酸盐降解芘达到最佳效果。pH在5~10范围内,弱酸和中性条件比碱性条件更加利于Fe~(2+)活化过硫酸盐氧化多环芳烃。  相似文献   

17.
Fe/Al改性膨润土对铬酸根的吸附性能研究   总被引:4,自引:1,他引:3  
利用膨润土原矿提取了粒径小于2μm的膨润土胶体,经过钠质化处理后分别用聚羟基铁和聚羟基铝进行改性,然后用一次平衡法研究了改性膨润土对水体中铬酸根的吸附性能.结果表明,与原矿相比,改性膨润土对铬酸根的吸附量有了不同程度的提高,铁改性膨润土对铬酸根的吸附量大于铝改性者.CrO42-的吸附平衡浓度为0.5 mmol·L-1时,Mt-1(Fe)、Mt-2(Fe)和Mt-3(Al)对铬酸根的吸附量分别为271.0 mmol·kg-1、114.0 mmol·kg-1和16.1 mmol·kg-1.改性膨润土对铬酸根的吸附量随离子强度的增加而增大,随体系pH值的增加而减小.铬酸根在改性膨润土表面的吸附以专性吸附机制为主,静电吸附所占比例很小,一般不超过30%.这些研究结果可为开发新型水处理剂提供理论指导.  相似文献   

18.
利用过氧化氢(H2O2)产生活性氧自由基(ROS)去除水中有机污染物是重要的高级氧化技术之一,干扰ROS产生将直接影响处理结果。利用紫外光诱导,考察了甲醇、乙腈、丙酮、乙醇等重要小分子有机溶剂及碳酸根(CO2-3)、碳酸氢根(HCO-3)、铁离子(Fe3+)、亚铁离子(Fe2+)、氯离子(Cl-)、硫酸根(SO2-4)和硝酸根(NO-3)等无机离子对水中H2O2产生ROS的影响。结果表明,缓冲体系富氧环境中ROS产生稳定,该体系同时有利于ROS被捕捉;非缓冲体系ROS的产生可能在瞬间发生。4种小分子有机质对H2O2光解影响的程度和性质不同,具有体积分数和反应时间的依赖性。钠离子(Na+)共存时,CO2-3和HCO-3对ROS产生的影响同样具有浓度和时间的依赖性;Na+共存时Cl-、SO2-4对H2O2光解没有明显影响;NO-3的影响在铅离子(Pb2+)替代Na+后受到抑制。在中性非缓冲水溶液中,低浓度Fe2+对H2O2光解具有强促进作用,且很快趋于平衡。研究表明,小分子有机溶剂和离子对光诱导H2O2产生ROS具有不易确定的复杂的影响,可能导致高级氧化技术在应用中的不稳定性。  相似文献   

19.
采用响应曲面法系统研究了掺硼金刚石(Boron-doped Diamond,BDD)膜电极电化学氧化双酚A (BisphenolA,BPA)的影响因素及含氯副产物的生成。结果表明,电流密度是影响降解速率常数(k)和氯离子消耗量(Δc(Cl-))的最主要因素。以BPA有效降解的同时生成较少量的含氯副产物为标准,通过响应曲面法计算得到的最优反应条件为:对0. 06 mmol/L BPA、40 mmol/L NaCl(pH=8)的溶液,当电流密度为15 mA/cm2时,k为0. 318 min-1,Δc(Cl-)仅为3. 55 mmol/L。BDD电极电解不仅生成了高浓度的高氯酸盐,还生成了1,1,2,2-四氯乙烷、2,3,4,6-四氯苯酚和五氯苯酚等仅在BDD体系中被检测到的含氯有机副产物。综上,经BDD电极电化学氧化处理后尽管整个BPA溶液的毒性明显降低,但还需特别关注反应过程中生成的含氯副产物。  相似文献   

20.
选用铁氧化合物和聚合硅酸铁(PSF)作为铁基多相UV-Fenton催化剂,比较抗坏血酸根对其化学还原生成和释放Fe2+的能力;通过多相UV-Fenton体系中橙Ⅱ的脱色、H2O2分解和·OH生成,分析抗坏血酸根对不同铁基催化剂的增效能力;探讨抗坏血酸根化学还原对铁基催化剂亚铁离子生成和铁离子溶出机制.结果表明,抗坏血酸根对聚合态铁离子的化学还原能力强于氧化物晶格中的铁离子,其还原不同铁基催化剂能力由大到小的顺序为:PSF、α-FeOOH、Fe3O4、α-Fe2 O3.在抗坏血酸根化学还原增效条件下,橙Ⅱ在 PSF、α-FeOOH、Fe3O4和 α-Fe2O3的 UV-Fenton 体系中"快速"脱色一级动力学常数相对于相应的基础体系能分别增加1 480%、1 270%、1 700%和1 110%.抗坏血酸根增效的原因是其能通过化学还原实现催化剂表面Fe2+的生成和释放,同时草酸等中间产物通过络合作用进一步增强催化剂Fe3+的溶出,并最终促进体系高浓度·OH的生成.反应结束后,增效体系中的Fe3+能重新吸附回铁基催化剂,从而避免催化剂活性组分流失和铁离子二次污染.该结果说明,外加抗坏血酸根是铁基多相UV-Fenton体系安全可靠的增效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号