首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
为保障天然气工业安全生产与运营,以某天然气储配厂为例,采用等效喷嘴和过程模型,利用FLACS软件对罐区高压天然气非恒定速率泄漏扩散进行数值模拟,考察环境风速及泄漏时间对气体泄漏扩散的影响.结果表明:储存压力为1.05 MPa的天然气储罐发生泄漏会产生欠膨胀射流,泄漏初期具有447.44 kJ的高动能,并在近场扩散起主导...  相似文献   

3.
4.
高压管道天然气泄漏扩散过程的数值模拟   总被引:3,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

5.
室内天然气泄漏扩散数值模拟及试验验证   总被引:1,自引:0,他引:1  
为研究厨房内泄漏天然气的浓度分布及其变化规律进而分析评价其危险性,通过Gambit软件建立一个典型的住宅厨房几何模型,采用Fluent软件模拟灶具软管脱落导致天然气泄漏时,在厨房门不同开度状态下厨房内天然气浓度场及可燃区域分布。模拟结果表明:门开度越大,室内可燃区域体积越小,天然气浓度分布趋于稳定的时间越短,稳定时天然气浓度越低,厨房内出现较大可燃体积所需的泄漏时间越长;当门全开时,厨房内不会出现可爆空间。搭建一个小尺寸的厨房实物进行泄漏试验,同时进行天然气浓度的实测和Fluent模拟,模拟结果与实测结果基本吻合,从而验证Fluent模拟的有效性。  相似文献   

6.
以液化天然气(LNG)储罐区出现泄漏事故时天然气的扩散行为为研究对象,利用计算流体力学软件FLUENT为工具,建立三维非稳态仿真模型,研究了0.8 m,2.0 m和3.0 m 3个围堰高度分别在无风条件和有风条件下对天然气泄漏扩散过程的影响机制。结果发现,无风时天然气在围堰区内的扩散基本稳定后,离泄漏源最远处的围堰上天然气浓度更高,该处的围堰更容易被气云翻越。围堰高度增大,限制了天然气水平方向的扩散及削弱风场的影响,减小对围堰外区域的危害但不利于天然气的消散,合理围堰高度在0.8~2.0 m之间。  相似文献   

7.
中压天然气管道泄漏扩散模拟研究   总被引:1,自引:1,他引:0  
建立了埋地中压天然气管道发生泄漏时时的数学模型,将土壤视为各向同性的多孔介质,采用FLUENT对天然气在土壤中的扩散规律及浓度分布进行模拟,分析不同时刻地表的危险区域范围,并对比了不同管道压力、泄漏孔径大小、泄漏位置等工况下危险半径随时间的变化。结果表明:管道压力越大,泄漏的体积流量越大,同一时间危险范围越大;相同的泄漏压力下,泄漏孔径对危险半径没有很大影响;不同泄漏孔位置,泄漏初期向上开口时危险半径最大,一段时间后向下开口危险半径最大。  相似文献   

8.
含硫天然气泄漏扩散是一个非常复杂的扩散过程,它受复杂地形空间、不同风向、风速等各种条件的影响。为此,采用可行的计算流体动力学(CFD)对这一过程进行了三维数值模拟,根据龙岗001-81井含硫天然气泄漏扩散事故现场,利用ArcGIS软件提取该井周围2 500 m范围内的地形数据建立计算域物理模型,模拟了在多种工况下(不同地形、风向、风速)含硫天然气的扩散规律,对扩散结果进行规律性总结。  相似文献   

9.
10.
架空及埋地天然气管道泄漏扩散数值研究   总被引:1,自引:0,他引:1  
天然气在管道运输过程中,由于含硫等腐蚀性气体对管道内壁的腐蚀作用,在管内其他压力的作用下,会引起穿孔泄漏。泄漏后的天然气扩散后,可能会引发火灾、中毒或爆炸。因此,进行天然气管道泄漏扩散及数值模拟研究,对管道输送安全运营和保障人生财产安全意义重大。该文利用CFD软件对架空及埋地含硫天然气管道穿孔泄漏后的甲烷、硫化氢气体的扩散进行了数值模拟。结果表明,受土壤毛孔阻力的影响,埋地天然气管道泄漏爆炸范围比架空天然气管道泄漏要小,但其在地面的影响时间长,硫化氢的中毒范围比架空要低30m左右。为天然气的安全输送及环境保护提供了理论依据。  相似文献   

11.
针对长输天然气架空管道泄漏问题,综合考虑风速随海拔变化的边界条件、管道管形及泄漏方向等因素,建立非稳态泄漏模型,对不同管道泄漏压力和不同天然气浓度边界的天然气非稳态泄漏扩散进行了数值模拟。结果表明:在天然气向下泄漏的工况下,天然气气团主要在地面积聚,呈无规则的扩散;天然气管道泄漏压力与气体泄漏扩散速度成正比,与天然气浓度边界达到稳定所需时间成反比:不同泄漏压力下天然气扩散稳定后的扩散距离及泄漏影响面积大致相同;天然气浓度边界越小,达到稳定所需时间越长。  相似文献   

12.
为了能够准确的估算输送天然气的管道因泄漏事故导致的损失,就必须建立合理和精确的输气管道泄漏扩散模型。运用流体动力学软件Fluent模拟处于坡面的天然气管道发生破裂时的泄漏扩散规律,得到天然气在泄漏孔径(0.1m,0.18m,0.24m,0.3m)、风速(0 m/s,4m/s,8m/s,10m/s)和泄漏初速度(179m/s,314m/s)对扩散过程的影响,得到坡面天然气管道泄漏扩散规律。研究结果不仅为预测坡面天然气管道泄漏扩散的影响提供了依据,而且对于认识坡面天然气管道泄漏扩散规律、为相关安全事故的预警和救援具有指导意义。  相似文献   

13.
居室天然气泄漏扩散过程仿真研究   总被引:2,自引:1,他引:1  
随着我国城市环境保护的提高,城市燃料结构也在逐步改变。天然气作为一种清洁、高效的能源已经成为居民应用最广泛的燃料。随着天然气用户的不断增加,其事故次数也在不断上升。为了系统的研究居室内天然气泄漏扩散的过程和发展,预防居民家庭天然气火灾和爆炸事故以及发生事故后的应急提供依据。本文以普通的居民居室为研究对象,建立居室天然气泄漏扩散几何模型。并对室内天然气泄漏后的扩散状态进行仿真模拟,得到天然气泄漏后的室内扩散过程,以及在不同时间内存在爆炸极限的区域和达到爆炸极限的范围,并对爆炸后果进行了评估。结果显示:在设定条件下,泄漏发生后640 s,冰箱电源处达到爆炸下限,790 s时达到爆炸上限;其爆炸能量已达到使大型钢架结构破坏,大部分人员死亡的程度。泄漏1800 s后,可燃区域就扩散到厨房之外,存在于客厅之中了。  相似文献   

14.
于力  柴建设  史强 《安全》2013,34(3):5-8
本文使用FLUENT建立一套室内中压输气管道泄露模型,研究天然气扩散规律,并讨论了室内浓度场随时间的变化以及不同因素对空间的浓度影响。  相似文献   

15.
有害物质泄漏扩散的数值模拟   总被引:5,自引:1,他引:5  
有害物质泄漏是一种常见事故.利用高斯公式和三维有限元建立有害物质泄漏扩散数学模型,估测有害物质泄漏扩散的危害范围和泄漏物质扩散过程中浓度的大小,相应的数学模型可作为泄漏事故安全保障工作中预防为主的科学依据,从而为可能发生的事故进行预测预警.  相似文献   

16.
液化天然气泄漏扩散实验的CFD模拟验证   总被引:2,自引:0,他引:2  
运用CFD软件fluent对LNG泄漏扩散的Burro实验进行了模拟,并将不同点处模拟的温度和浓度随时间的变化与实验结果进行了对比.结果表明,温度和浓度的变化趋势与实验值基本一致,水平面、侧面以及对称面上的浓度等值线分布也与实验基本吻合,模拟得到的下风向处甲烷的最大体积分数在近源处要低于实验值,在距离泄漏源较远处则偏高,最后在实验结果的基础上,计算了模拟结果的统计误差,并将其与各种模型的误差进行对比,结果表明fluent的误差要低于其他模型,所预测的值总体上来说偏高.  相似文献   

17.
城区天然气管道泄漏数值模拟与爆炸危害分析   总被引:1,自引:0,他引:1  
在人口密度为三级和四级的城区内,密集的高建筑物对天然气管道泄漏后的扩散和流场形成产生重要影响。本文以某城市的实际情况为例,建立多建筑物的空间几何模型,采用k-ε湍流方程,SIMPLE算法,模拟了在三种不同风流速度、三种不同压力条件下,城区天然气管道泄漏气体在多建筑物地形中的扩散情况。根据模拟结果,依据天然气的爆炸极限,对模拟结果及其火灾爆炸危害的范围进行了对比分析。结果表明,CH4气体的泄漏扩散同时受管道压力、风流速度和周围建筑物的影响;同时受当地风速的影响,泄漏气柱在风流作用下会发生偏折,造成阻挡风流的建筑物内侧危险气体浓度升高,大大增加建筑物周围环境的危险性。研究结果对城区天然气管道的建设具有一定的指导意义。  相似文献   

18.
某集输站场的天然气中含有大量的H2S,一旦管道或设备腐蚀泄漏,将会造成非常严重的后果.针对潜在的中毒、火灾和爆炸后果的危险性,建立各种后果的数学模型,用DNV公司的PHAST软件模拟了天然气发生泄漏后所造成各种后果的影响范围及危害程度,并确定出对于高含硫天然气泄漏后果影响最严重的模型.  相似文献   

19.
针对海洋酸性气田开采过程中含硫天然气井喷失控扩散问题,采用CFD方法建立井喷含硫天然气扩散后果预测与评估模型。综合考虑天然气爆燃与硫化氢毒害风险因素,对不同场景条件下的含硫天然气扩散过程开展数值模拟,研究硫化氢浓度、风向、风速等因素对含硫天然气扩散行为的影响,预测和评估天然气扩散所形成的危险区域和硫化氢气体扩散所形成的毒害范围。研究表明:随着硫化氢浓度的增加,燃爆区域无明显变化,而毒害区域明显增加;船艉来风导致的事故后果最为严重,左、右舷来风有利于危险气体的扩散与消散;风速越大,燃爆区域和毒害区域范围越小,但是在船艏来风且风速较大的工况下,硫化氢气体竖直扩散距离降低且逐渐贴近生活区,容易造成作业人员中毒事故的发生。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号