首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 71 species of horseshoe bat (genus Rhinolophus) use echolocation calls with long constant-frequency (CF) components to detect and localize fluttering insects which they seize in aerial captures or glean from foliage. Here we describe ground-gleaning as an additional prey-capture strategy for horseshoe bats. This study presents the first record and experimental evidence for ground-gleaning in the little-studied Blasius horseshoe bat (Rhinolophus blasii). The gleaning bouts in a flight tent included landing, quadrupedal walking and take-off from the ground. The bats emitted echolocation calls continuously during all phases of prey capture. Both spontaneously and in a choice experiment, all six individuals attacked only fluttering insects and never motionless prey. These data suggest that R. blasii performs ground-gleaning largely by relying on the same prey-detection strategy and echolocation behaviour that it and other horseshoe bats use for aerial hawking.We also studied the Mediterranean horseshoe bat (R. euryale) in the flight tent. All four individuals never gleaned prey from the ground, though they appeared to be well able to detect fluttering moths on the ground. It is not known yet whether ground-gleaning plays a role in Mehelys horseshoe bat (R. mehelyi). In a performance test, we measured the ability of these three European species of middle-sized horseshoe bats (R. euryale, R. mehelyi and R. blasii) to take-off from the ground. All were able to take flight even in a confined space; i.e. the willingness to ground-glean in R. blasii is not related to a superior take-off performance. In contrast to ground-gleaning bats of other phylogenetic lineages, R. blasii appears not to be a specialist, but rather shows a remarkable behavioural flexibility in prey-capture strategies and abilities. We suggest that the key innovation of CF echolocation paired with behavioural flexibility in foraging strategies might explain the evolutionary success of Rhinolophus as the second largest genus of bat.Communicated by T. Czeschlik  相似文献   

2.
Summary Hipposideros ruber use CF/FM echolocation calls to detect the wing flutter of their insect prey. Fluttering prey were detected whether the insects were flying or sitting on a surface, and prey in either situation were captured with equal success (approximately 40% of capture attempts). Stationary prey were ignored. The bats did not use visual cues or the sounds of wing flutter to locate their prey. Wing flutter detection suggests that H. ruber exploit the Doppler-shifted information in echoes of their echolocation calls. These bats fed primarily upon moths, usually those of between 10 and 25 mm wingchord, although moths of less than 5 mm and greater than 40 mm wingchord were also attacked and captured. They showed no evidence of selecting moths on the basis of species or other taxonomic distinction, and occasionaly captured other insects.  相似文献   

3.
Summary Foraging and echolocation behavior and its ontogeny in the lesser bulldog bat, Noctilio albiventris, were studied in Panama under field and captive conditions. The vocalizations utilized for echolocation and communication were monitored. Adult N. albiventris captured insect prey from the water surface employing various combinations of CF/FM (constant frequency and frequency modulated) signals. The proportions of CF/FM and the repetition rate were a function of the bat's activity. Most adults exhibited post-sunset and pre-dawn foraging activity, although several telemetered lactating females foraged for only the half hour after dusk, spending the rest of the night with their babies in the roost. When the juveniles began to leave the roost at the age of two months, they appeared to accompany their mothers on initial flights.Captive infant Noctilio developed slowly, and did not fly until about 5–6 weeks postnatally. They continued to nurse for almost 3 months, even though they were capable of eating solid food at about 6 weeks. Previous to weaning, mothers fed their infants with masticated food from their cheekpouches.At birth, Noctilio emit a combination of long FM isolation calls and shorter CF/FM pulses. Mothers nurse only their own babies which they appear to recognize by a vocal signature contained in the infants' isolation calls. The individual isolation calls, as well as the mother's communication sounds, appear to be variations of an FM sinusoidal wave. The periodicity and amplitude change, and different portions including harmonics are added or deleted. The short CF/FM signals of the infant evolve into the adult orientation type signals as the CF component increases in frequency and the repetition rate increases. These sounds appear to serve a dual function in communication and echolocation. Mother-young pairs were observed to call antiphonally, utilizing CF/short FM signals in retrieval situations. This duetting was also observed in bats flying over the Chagras River after the time the juveniles began to fly, and may function to maintain vocal contact during initial foraging flights.Deceased  相似文献   

4.
Summary The echolocation and hunting behavior of two very small bats, Craseonycteris thonglongyai (Hill) and Myotis siligorensis (Horsfield), from Thailand, were investigated using multiflash photographs, video, and high-speed tape recordings with a microphone array that allowed determination of distance and direction to the bats. C. thonglongyai is the world's smallest mammal and M. siligorensis is only slightly larger. Both bats hunted insects in open areas. The search signals of C. thonglongyai were 3.5 ms long multiharmonic constant frequency (CF) signals with a prominent second harmonic at 73 kHz repeated at around 22 Hz. The band width (BW) of the short terminal frequency modulated (FM) sweep increased during the very short approach phase. In the final buzz the CF component disappeared, the duration decreased to 0.2 ms, and the repetition rate increased to 215 Hz (Figs. 2, 3, 4). There was no drop in frequency in the buzz. The video recordings of C. thonglongyai indicated that it seizes insects directly with the mouth (Fig. 1). M. siligorensis produced 5.4 ms long CF search signals at 66 kHz. The repetition rate was around 13 Hz. In the approach phase an initial broad band FM sweep was added. The buzz consisted of two phases, buzz I and buzz II. Buzz 11 was characterized by short cry durations (around 0.3 ms), a constant high repetition rate (185 Hz), a distinct drop in frequency, and a prominent second harmonic (Figs. 5, 6, 7). The drop in frequency, apparently typical of vespertilionid bats, has been explained by physiological limitations in sound production. However, C. thonglongyai produced very short signals at very high repetition rates without any frequency drop. The drop may be of adaptive value since it enables M. siligorensis to produce very short signals with high sweep rates. The drop moves the pronounced second harmonic into the frequency range of most interest to the bat (Fig. 7D). The sweep rate in this frequency range may now increase to twice the maximum rate that the vocal cords can produce directly. C. thonglongyai and M. siligorensis belong to different superfamilies, Emballonuroidea and Vespertilionoidea, respectively. In spite of their phylogenetic distance they produce strikingly similar search signals of narrow BW around 70 kHz with high source levels (100–115 dB peSPL peak equivalent sound pressure level). We argue that the signal resemblance is due to the similarity in size and hunting behavior of the two bats both hunting insects in open areas. High frequencies are heavily attenuated in air, but because of their small size the bats are restricted to hunting small insects which only reflect echoes at high frequencies. Thus, the emitted frequency is probably the lowest possible given the prey size. Hence, the two bats can only maximize the range of their sonar by decreasing the BW and emitting high intensities. Correspondence to: A. Surlykke  相似文献   

5.
We present a hitherto unknown prey perception strategy in bats: Myotis nattereri (Vespertilionidae, Chiroptera) is able to perceive prey by echolocation within a few centimeters of echo-cluttering vegetation, by using frequency-modulated search signals of very large bandwidth (up to 135 kHz). We describe the species’ search behavior and echolocation repertoire from the field and from experiments in a flight tent. In the field, bats varied signal parameters in relation to their distance from vegetation and usually flew close to vegetation. In the flight tent, M. nattereri detected and localized prey by echolocation alone as close as 5 cm from vegetation. Apparently, the bats were able to tolerate some overlap between prey and clutter echoes. Passive prey cues (vision, olfaction, prey-generated sounds) were not used in prey perception. The bats selected prey by size. The animals performed aerial catches and produced approach sequences typical for aerial hawking bats, but were able to do so within a few centimeters of the substrate. M. nattereri thus has access to silent, suspended prey very close to vegetation (e.g., spiders, and caterpillars on threads). Received: 29 September 1999 / Received in revised form: 12 February 2000 / Accepted: 12 February 2000  相似文献   

6.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   

7.
When hunting for fish Noctilio leporinus uses several strategies. In high search flight it flies within 20–50 cm of the water surface and emits groups of two to four echolocation signals, always containing at least one pure constant frequency (CF) pulse and one mixed CF-FM pulse consisting of a CF component which is followed by a frequency-modulated (FM) component. The pure CF signals are the longest, with an average duration of 13.3 ms and a maximum of 17 ms. The CF component of the CF-FM signals averages 8.9 ms, the FM sweeps 3.9 ms. The CF components have frequencies of 52.8–56.2 kHz and the FM components have an average bandwidth of 25.9 kHz. A bat in high search flight reacts to jumping fish with pointed dips at the spot where a fish has broken the surface. As it descends to the water surface the bat shows the typical approach pattern of all bats with decreasing pulse duration and pulse interval. A jumping fish reveals itself by a typical pattern of temporary echo glints, reflected back to the bat from its body and from the water disturbance. In low search flight N. leporinus drops to a height of only 4–10 cm, with body parallel to the water, legs extended straight back and turned slightly downward, and feet cocked somewhat above the line of the legs and poised within 2–4 cm of the water surface. In this situation N. leporinus emits long series of short CF-FM pulses with an average duration of 5.6 ms (CF 3.1 and FM 2.6) and an average pulse interval of 20 ms, indicating that it is looking for targets within a short range. N. leporinus also makes pointed dips during low search flight by rapidly snapping the feet into the water at the spot where it has localized a jumping fish or disturbance. In the random rake mode, N. leporinus drops to the water surface, lowers its feet and drags its claws through the water in relatively straight lines for up to 10m. The echolocation behavior is similar to that of high search flight. This indicates that in this hunting mode N. leporinus is not pursuing specific targets, and that raking is a random or statistical search for surface fishes. When raking, the bat uses two strategies. In directed random rake it rakes through patches of water where fish jumping activity is high. Our interpretation is that the bat detects this activity by echolocation but prefers not to concentrate on a single jumping fish. In the absence of jumping fish, after flying for several minutes without any dips, N. leporinus starts to make very long rakes in areas where it has hunted successfully before (memory-directed random rake). Hunting bats caught a fish approximately once in every 50–200 passes through the hunting area.  相似文献   

8.
Summary In October 1984 foraging areas and foraging behaviour of the rufous horseshoe bat, Rhinolophus rouxi, were studied around a nursery colony on the hill slopes of Sri Lanka. The bats only foraged in dense forest and were not found in open woodlands (Fig. 1). This strongly supports the hypothesis that detection of fluttering prey is by pure tone echolocation within or close to echo-cluttering foliage. During a first activity period after sunset for about 30–60 min, the bats mainly caught insects on the wing. This was followed by a period of inactivity for another 60–120 min. Thereafter the bats resumed foraging throughout the night. They mainly alighted on specific twigs and foraged in flycatcher style. Individual bats maintained individual foraging areas of about 20x20 m. They stayed in this area throughout the night and returned to the same area on subsequent nights. Within this area the bats generally alighted on twigs at the same spots. Foraging areas were not defended against intruders. The bats echolocated throughout the night at an average repetition rate of 9.6±1.4 sounds/s. While hanging on twigs they scanned the surrounding area for flying prey by turning their bodies continuously around their legs. On average they performed one brief catching flight every 2 min and immediately returned to one of their favourite vantage points. Echolocation sounds may consist of up to three parts, a brief initial frequency-modulated (FM) component, a long constant frequency (CF) part lasting for about 40–50 ms, and a final FM part again (Fig. 4b, c). Adult males and females emitted pure tone frequencies in separate bands, the males from 73.5–77 kHz and the females from 76.5–79 kHz (Fig. 5). During scanning for prey from vantage points, the bats mostly emitted pure tones without any FM component (Fig. 4a). The last few pure tones emitted before take-off were prolonged to about 60 ms duration. The final FM part was therefore not an obligatory component of the echolocation signals in horseshoe bats. During flight and especially during emergence from the cave, most sounds consisted of a pure tone and loud initial and final FM sweeps. We therefore suggest that the initial FM part might also be relevant for echolocation. From our observations we conclude that the FM components are especially important during obstacle avoidance. In most sounds emitted in the field a fainter first harmonic was present. It was usually up to 30 dB fainter than the second harmonic, but in some instances it was as loud or even distinctly louder than the second one (Fig. 6a). Even within one sound the intensity relationship between the two harmonics may be reversed. We therefore suggest that the first harmonic is an integral part of the signal and relevant for information analysis in echolocation.  相似文献   

9.
Interindividual use of echolocation calls: Eavesdropping by bats   总被引:4,自引:0,他引:4  
Summary The use of other individual's echolocation calls by little brown bats, Myotis lucifugus, was tested by observing the response of free-flying bats to presentations of recorded echolocation calls and artificial sounds. Bats responded by approaching conspecific calls while searching for food, night roosts, nursery colonies and mating/hibernation sites. Response was low or non-existant to other sounds. While searching for prey, M. lucifugus also responded to the echolocation calls of Eptesicus fuscus, a sympatric species with overlapping diet but distinctly different echolocation calls. Subadults were especially responsive to conspecific calls.All four situations in which the bats responded involve patchily distributed resources at which bats accumulate. Concentrations of echolocation calls thus likely serve as cues regarding the location of resources. Individuals approaching feeding groups, for example, could increase prey detection range by up to 50 times over individuals relying solely on their own echolocation.Although the costs associated with eavesdropping may be negligible for M. lucifugus, for other species, particularly territorial ones, being conspicuous may be a disadvantage and the possibility of being over-heard by other bats may have been one factor involved in the evolution of echolocation call design.  相似文献   

10.
The echolocation calls used by Nyctalus leisleri during search phase in open air space are between 9 and 14 ms long, with the peak energy between 24 and 28 kHz. The pulses are shallowly frequency-modulated with or without an initial steep frequency-modulated component. The diet consists primarily of small flies (Diptera), including many chironomids (wingspan 9–12 mm) and yellow dung flies (Scatophaga; wingspan 24 mm), but also of some larger insects such as dung beetles (Coleoptera; Scarabaeoidea), caddis-flies (Trichoptera) and moths (Lepidoptera). The echo target strength of some prey items was measured. Contrary to models based on standard targets such as spheres or disks, the echo strength of real insects was found to be virtually independent of the emitted frequency within the 20–100 kHz frequency range. A model was used to calculate probable detection distances of the prey by the bat. Using narrow-band calls of 13.7 ± 2.7 ms duration, a bat would detect the two smallest size classes of insect at greatest range using calls of 20 kHz. The results may therefore explain why many species of large and medium sized aerial-hawking bats use low-frequency calls and still eat mostly relatively small insects. The data and model challenges the assumption that small prey are unavailable to bats using low-frequency calls.  相似文献   

11.
The fringe-lipped bat, Trachops cirrhosus, is an eavesdropping predator that hunts frogs and katydids by approaching these preys' sexual advertisement calls. In captivity, bats can rapidly learn to associate novel acoustic stimuli with food rewards. It is unknown how this learning ability is related to foraging behavior in the wild where prey and the calls that identify them vary over space and time. In two bat populations that differ in available prey species (Soberanía, Panama, and La Selva, Costa Rica), we presented wild-caught bats with frog calls, katydid calls, and control stimuli. Bats in Soberanía were significantly more responsive to complex calls and choruses of the túngara frog, Physalaemus pustulosus, than were bats in La Selva. La Selva bats were significantly more responsive to katydid calls (Steirodon sp.) than Soberanía bats. We also examined seasonal variation in bat response to prey cues. Bats were captured in Soberanía in dry and wet seasons and presented with the calls of a dry season breeding frog (Smilisca sila), a wet season breeding frog (P. pustulosus), and four katydid species. Bats captured in the dry season were significantly more responsive to the calls of S. sila than bats captured in the wet season, but there were no seasonal differences in response to the calls of P. pustulosus or the katydid calls. We demonstrate plasticity in the foraging behavior of this eavesdropping predator but also show that response to prey cues is not predicted solely by prey availability.  相似文献   

12.
Echolocating bats adjust the time–frequency structure such as sweep rate and pulse interval of their sonar calls when they move from open space to vegetation-dense environments. Emitted call intensity is equally important for echolocation, but adjustment of signal intensity to different habitats has never been systematically studied in any bat species. To address this question, we recorded sonar calls of the Neotropical trawling insectivorous bat Macrophyllum macrophyllum (Phyllostomidae) at three sites with different obstacle densities (clutter). We found a clear correlation between emitted intensity and degree of clutter, with intensity proportional to decreasing clutter. In highly cluttered, semicluttered, and open spaces, M. macrophyllum emitted calls with mean source levels (sound pressure level (SPL) 10 cm from the bat’s mouth) of 100, 105, and 111 dB SPL root mean square (rms), respectively. To our knowledge, this is the first documentation of dynamic intensity adjustments in bats. Phyllostomid bats were previously considered silent, but the 111-dB SPL rms emitted by free-ranging M. macrophyllum in open space is comparable to output in aerial insectivorous bats from other families. Our results suggest that the acoustic constraints of habitats are better predictors of call intensity than phylogeny and therefore likely to be major drivers shaping the sonar system of bats in the course of evolution.  相似文献   

13.
Many nocturnal katydids (Orthoptera: Tettigoniidae) produce intense calling songs, and some bat species use these songs to detect and locate prey. One Nearctic katydid species, Neoconocephalus ensiger, ceases or pauses singing in response to bat echolocation calls. We tested the hypothesis that song cessation is an effective defence against gleaning bats (i.e., bats that take prey from surfaces). We observed Myotis septentrionalis, a sympatric bat species that uses prey-generated sounds when gleaning, attack and feed on singing N. ensiger in an outdoor flight room. These bats demonstrated a preference for the calling song of N. ensiger over a novel cricket calling song when they were broadcast from a speaker in the flight room. Bats attacked speakers broadcasting N. ensiger calling song as long as the song was continuous and aborted their attack if the sound stopped as they approached, regardless of whether a katydid was present as a physical target on the speaker. Echolocation calls were recorded during attacks and no significant differences were found between continuous and interrupted song approaches for four call parameters, suggesting that M. septentrionalis may not use echolocation to locate silent prey. Therefore, song cessation by katydids in response to ultrasound is an effective defence against gleaning bats.  相似文献   

14.
The literature suggests that in familiar laboratory settings, Indian false vampire bats (Megaderma lyra, family Megadermatidae) locate terrestrial prey with and without emitting echolocation calls in the dark and cease echolocating when simulated moonlit conditions presumably allow the use of vision. More recent laboratory-based research suggests that M. lyra uses echolocation throughout attacks but at emission rates much lower than those of other gleaning bats. We present data from wild-caught bats hunting for and capturing prey in unfamiliar conditions mimicking natural situations. By varying light level and substrate complexity we demonstrated that hunting M. lyra always emit echolocation calls and that emission patterns are the same regardless of light/substrate condition and similar to those of other wild-caught gleaning bats. Therefore, echoic information appears necessary for this species when hunting in unfamiliar situations, while, in the context of past research, echolocation may be supplanted by vision, spatial memory or both in familiar spaces.Communicated by T. Czeschlik  相似文献   

15.
When searching for flying insects, Molossops temminckii uses unusual echolocation calls characterized by upward modulation of frequency vs time (UFM). Call frequency increases asymptotically in the relatively long (∼8 ms) pulses from a starting frequency of ∼40 kHz to a long narrowband tail at ∼50 kHz. When approaching a prey, the bat progressively increases the duration of calls and intersperses in the sequence broadband downwardly frequency-modulated signals with a terminal frequency of about 53 kHz, which totally replaces the UFM signals at the end of the approach phase. The sequence progresses to a capture buzz resembling those from other molossid and vespertilionid bats. The M. temminckii wing morphology is characterized by an average aspect ratio and a high wing loading, suggesting that it is more maneuverable than the typical Molossidae but less than typical Vespertilionidae. M. temminckii regularly forages near clutter, where it needs to pay attention to the background and might face forward and backward masking of signals. We hypothesize that the UFM echolocation signals of M. temminckii represent an adaptation to foraging near background clutter in a not very maneuverable bat needing a broad attention window. The broadband component of the signal might serve for the perception of the background and the narrowband tail for detection and perhaps classification of prey. Bats may solve the signal masking problems by separating emission and echoes in the frequency domain. The echolocation behavior of M. temminckii may shed light on the evolution of the narrowband frequency analysis echolocation systems adopted by some bats foraging within clutter.  相似文献   

16.
The outcome of predator-prey interactions depends on the characteristics of predators and prey as well as the structure of the environment. In a replicated field enclosure experiment, we tested the effects of quantity and quality of different prey refuges (no structure, structure forming a partial refuge, and structure forming a complete refuge) on the interaction between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus). We quantified the behaviour of the predators and the prey and predator-induced prey mortality. The piscivores stayed in or close to the prey refuge and were more dispersed in the presence than in the absence of prey refuges. Survival of juvenile perch and roach decreased in the presence of predators and was higher for juvenile roach than for juvenile perch. In addition, juvenile perch survival increased with refuge efficiency Roach formed schools which were denser in the presence of predators, had a higher swimming speed (both in the open water and in the refuge) and used a larger area than juvenile perch. Both prey species decreased their distance to the prey refuge and increased the proportion of their time spent in the refuge in the presence of predators. The number of switches between the open-water habitat and the prey refuge was higher for juvenile roach than for juvenile perch. Juvenile perch used different parts of the prey refuge in a flexible way depending both on presence of predators and refuge type whereas juvenile roach used the different parts of the prey refuge in fixed proportions over all refuge treatments. Our results suggest that juvenile roach had a overall higher capacity to avoid predation than juvenile perch. However, in the presence of qualitatively different prey refuges juvenile perch responded to predators with more flexible refuge use than juvenile roach. The differences in antipredator capacities of juvenile perch and roach when subjected to piscivorous perch predation may depend on differences in life history patterns of the two species.  相似文献   

17.
We studied the role of echolocation and other sensory cues in two small frugivorous New World leaf-nosed bats (Phyllostomidae: Artibeus watsoni and Vampyressa pusilla) feeding on different types of fig fruit. To test which cues the bats need to find these fruit, we conducted behavioral experiments in a flight cage with ripe and similar-sized figs where we selectively excluded vision, olfaction, and echolocation cues from the bats. In another series of experiments, we tested the discrimination abilities of the bats and presented sets of fruits that differed in ripeness (ripe, unripe), size (small, large), and quality (intact(infested with caterpillars). We monitored the bats' foraging and echolocation behavior simultaneously. In flight, both bat species continuously emitted short (<2 ms), multi-harmonic, and steep frequency-modulated (FM) calls of high frequencies, large bandwidth, and very low amplitude. Foraging behavior of bats was composed of two distinct stages: search or orienting flight followed by approach behavior consisting of exploration flights, multiple approaches of a selected fruit, and final acquisition of ripe figs in flight or in a brief landing. Both bat species continuously emitted echolocation calls. Structure and pattern of signals changed predictably when the bats switched from search or orienting calls to approach calls. We did not record a terminal phase before final acquisition of a fruit, as it is typical for aerial insectivorous bats prior to capture. Both bat species selected ripe over unripe fruit and non-infested over infested fruit. Artibeus watsoni preferred larger over smaller fruit. We conclude from our experiments, that the bats used a combination of odor-guided detection together with echolocation for localization in order to find ripe fruit and to discriminate among them.  相似文献   

18.
1.  Five species of emballonurid bats (Rhynchonycteris naso, Saccopteryx leptura, Balantiopteryx plicata, Saccopteryx bilineata, and Peropteryx kappleri), were studied in Costa Rica and Trinidad. Stomach contents suggest that prey size generally increases for bat body size, but within these species there is considerable overlap. R. naso, S. leptura, and P. kappleri each appear to be specialized for foraging in a particular habitat type; B. plicata and S. bilineata are more opportunistic and feed over a variety of habitats during the year. While the other species feed in the proximity of surfaces, B. plicata is further separated from the other species by wing specializations favoring high altitude flight.
2.  Foraging dispersion is more closely related to body size than it is to social structure at the roost: small bats group-forage while larger bats feed in solitary beats. In all of the species, food is spatially and temporally variable, and the location of foraging sites changes seasonally in accordance with these locally varying patterns of aerial insect abundance. In the case of S. bilineata, the locations of foraging sites were positively correlated with levels of phenological activity in the underlying plant communities.
3.  Colony sizes ranged from small groups of 2–10 bats (S. leptura, P. kappleri), to intermediate colonies of 5–50 bats (R. naso, S. bilineata), to very large colonies with hundreds of bats (B. plicata).
4.  R. naso, S. leptura, and S. bilineata colonies have colony-specific annual foraging ranges which are actively defended against conspecifics from other colonies. In most cases, all members of a given colony of one of these species will be found foraging in a common site at any time. In R. naso and S. bilineata, currently used foraging sites are partitioned socially. In the former species, adult breeding females occupy a central area and groupforage while younger non-breeding females and males occupy peripheral foraging areas in the colony territory. In S. bilineata, the colony foraging site is partitioned into individual harem territories defended by harem males and containing the individual beats of all current harem females. For this latter species, details of roost site subdivision are mapped directly onto foraging dispersions. In general, there is a close correlation between dayroost group membership and location of nocturnal foraging sites in all of the study species.
  相似文献   

19.
We studied the echolocation and hunting behavior of three aerial insectivorous species of bats (Vespertilionidae: Pipistrellus) in the field in order to characterize the signals used by the bats and to determine how call structure varies in relation to habitat structure (uncluttered versus cluttered space). We documented free-flying, naturally foraging wild pipistrelles in various habitats using multiflash stereophotography combined with simultaneous sound recordings. Then we reconstructed the bat's flight position in three-dimensional space and correlated it with the corresponding echolocation sequences. In all three species of pipistrelles, signal structure varied substantially. In echolocation sequences of the search phase we found a consistent association of signal types with habitat types. In uncluttered habitats (obstacles more than 5 m from the bat) pipistrelles emitted almost exclusively narrowband signals with bandwidths less than 15 kHz. In cluttered habitats (obstacles less than 5 m from the bat) they switched to signals with bandwidths of more than 15 kHz. Wideband signals were also used when the bats were turning in cluttered and uncluttered spaces and for an instant after turning away from obstacles. Prey detection occured only when the outgoing signal did not overlap with the returning echo from potential prey. The bats also avoided overlap of echoes from potential prey and obstacles. Based on the results of this study, we propose an overlap-free window within which pipistrelles may detect potential prey and which allows predictions of minimum distances to prey and clutter-producing objects. Correspondence to: E.K.V. Kalko  相似文献   

20.
We studied variability in foraging behavior of Noctilio albiventris (Chiroptera: Noctilionidae) in Costa Rica and Panamá and related it to properties of its echolocation behavior. N. albiventris searches for prey in high (>20 cm) or low (<20 cm) search flight, mostly over water. It captures insects in mid-air (aerial captures) and from the water surface (pointed dip). We once observed an individual dragging its feet through the water (directed random rake). In search flight, N. albiventris emits groups of echolocation signals (duration 10–11 ms) containing mixed signals with constant-frequency (CF) and frequency-modulated (FM) components, or pure CF signals. Sometimes, mostly over land, it produces long FM signals (duration 15–21 ms). When N. albiventris approaches prey in a pointed dip or in aerial captures, pulse duration and pulse interval are reduced, the CF component is eliminated, and a terminal phase with short FM signals (duration 2 ms) at high repetition rates (150–170 Hz) is emitted. Except for the last pulses in the terminal phase N. albiventris avoids overlap between emitted signals and echoes returning from prey. During rakes, echolocation behavior is similar to that in high search flight. We compare N. albiventris with its larger congener, N. leporinus, and discuss behavioral and morphological specializations that can be interpreted as preadaptations favoring the evolution of piscivory as seen in N. leporinus. Prominent among these specializations are the CF components of the echolocation signals which allow detection and evaluation of fluttering prey amidst clutter-echoes, high variability in foraging strategy and the associated echolocation behavior, as well as morphological specializations such as enlarged feet for capturing prey from the water surface. Received: 21 April 1997 / Accepted after revision: 12 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号