首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了研究油库常见的分支结构空间内发生油气爆炸时火焰和压力的传播特性,建立了基于WALE湍流模型及Zimont预混火焰模型的油气爆炸模型;模拟了6种不同分支管道结构空间内汽油/空气混合物爆炸发生发展过程;研究了分支管道数量及相对设置位置对爆炸超压的影响规律,以及分支管道对火焰传播形态和速度的影响规律;模拟结果与前人相关实验规律进行对比。研究结果表明:分支管道对汽油/空气混合气预混爆炸具有明显的强化激励作用;火焰锋面传播经过分支管道时,经历规则—褶皱—规则的变化过程;主管道内火焰传播速度,在分支管道对流场的突扩作用和湍流作用的共同影响下呈震荡变化的规律。  相似文献   

2.
为探究氢气(H_2)/空气(Air)预混气体爆炸事故中突扩型管道对火焰结构形成与发展造成的影响,基于k-ε湍流模型和β-flame火焰增厚模型,采用Flacs软件开展不同突扩角度β对突扩管道内火焰传播特性(速度和超压等)影响的数值模拟研究。结果表明:不同β的管道内H_2/Air预混火焰传播过程都经历熄灭与再次点燃阶段;β对管道内火焰传播距离有明显影响,随着β角度减小,火焰极限传播距离明显降低;β越小,管道内斜压作用对涡旋抑制效果越明显,进而越会抑制燃料组分的输运和火焰的继续传播。  相似文献   

3.
瓦斯爆炸过程中火焰传播的实验与数值模拟研究   总被引:1,自引:0,他引:1  
为了研究矿井瓦斯爆炸火焰发展过程中结构与参数的动态变化特征,建立小尺寸管道气体爆炸实验平台,结合高速纹影摄影技术,探测了不同浓度的甲烷-空气预混气体火焰在管道内传播的结构变化特性,并得出速度变化特征曲线。同时建立相应的数学模型和物理模型,通过模拟实验研究管道内气体爆炸反应过程中火焰传播速度变化过程,计算图像和实验图像走向趋向一致。  相似文献   

4.
工业尾气回收网结构复杂,存在许多变径结构,回收气体大多燃易爆,因此有发生燃爆事故的风险.为探究变径结构对可燃气云燃爆过程的影响,在管长为0.5m变截面管道内,采用预混燃烧模型和Zimont湍流燃烧模型,对可燃预混气体燃爆特性开展了大涡模拟(LES)研究.结果 表明:在0.5m管长的通径管道内,管道截面越小,管壁对火焰的约束作用越大,壁面反射增强,管道壁面形成的湍流加速壁面附近的火焰传播速度,使得Tulip火焰出现越早,达到最大火焰传播速度的位置距点火端越近;管道截面越小,火焰厚度越大.不同管道结构下Tulip火焰结构不同,在突缩和连续突缩管道中Tulip火焰产生变形,火焰锋面不再光滑;变截面结构对火焰传播有激励作用,管道内截面变化后涡团的产生和演化加速了火焰传播,突缩管道结构对火焰传播有明显的加速作用,因此尾气回收管网设计需尽量减少突缩管道结构或在突缩管道结构位置增加阻火装置.  相似文献   

5.
本文构建了12 m×0.125 m的大长径比密闭管道的二维模型,运用计算流体动力学软件Fluent,基于Realizable k-ε湍流模型和预混燃烧模型,对有障碍物条件下丙烷-空气爆炸过程中湍流对火焰的加速机理进行数值模拟研究,重点分析不同阻塞率对流场微观特性的影响规律。结果表明,阻塞率对管道内流场特性的影响十分明显,在一定范围内,阻塞率越大,火焰锋面前后的速度梯度越高,引起的湍流涡旋规模越大,导致火焰阵面的变形程度越严重,使得火焰锋面传播速度以及气体的扩散速度也越快。  相似文献   

6.
以甲烷/空气为研究对象,建立小尺寸管道气体爆炸实验平台,利用高速纹影技术,探测了泄爆过程中预混气体火焰在管道内的传播特性,并得出流场压力、火焰传播速度变化曲线;同时建立k-ε模型,对管道内甲烷/空气预混气体泄爆过程进行模拟,得到数值模拟情况下的流场压力和火焰传播速度变化曲线.模拟图像和实验图像变化趋势大体一致.  相似文献   

7.
为揭示障碍物对于火焰传播过程中的激励作用,采用Zimont火焰面模型对内置不同阻塞率障碍物的密闭管道内天然气-空气预混气体的燃爆过程进行数值模拟,结果表明障碍物对于天然气燃爆过程中火焰传播的激励作用明显,火焰传播经历了从层流向湍流的转变过程,70%阻塞率时激励作用达到最大,火焰前锋速度达到了1 156 m/s,管道内最大爆炸压力达到1.02 MPa;火焰传播至障碍物处时,不同阻塞率障碍物场中湍流动能峰值变化趋势基本一致,且高湍流动能区的分布与湍流动能峰值发生剧烈变化。  相似文献   

8.
为研究多孔材料对封闭管道内甲烷-空气预混气体火焰传播的影响,设计加工了横截面积为80 mm×80 mm的方形试验管道,运用自发光拍摄技术和动态压力传感器对甲烷-空气预混火焰在该管道内传播过程中形状变化和压力特性进行了实验研究。结果表明,在管道尾部放置3种不同材质的多孔材料时,其对爆炸压力均有一定的抑制作用,聚氨酯泡沫对管道内压力的衰减效果优于聚苯乙烯泡沫和自制泡沫材料。对压力曲线进行一次求导,得出了压力变化速率,结果与空管道实验相比,在放置多孔材料的管道内压力降低的速率更快,时间更短。  相似文献   

9.
为研究连通器瓦斯爆炸的瞬态流场并精确捕捉冲击波,采用基于详细化学反应的建表方法(TDC),在OpenFOAM平台上开发基于HLLC算法的瓦斯爆炸求解器,对1 m3密闭釜-管道系统内的瓦斯(甲烷)-空气预混气体爆炸模拟分析,通过瓦斯爆炸试验对模拟结果进行验证,在此基础上分析连通器瓦斯爆炸火焰及冲击波传播特性。结果表明:瓦斯爆炸火焰经过管道时加速,以射流形式喷入传爆釜,传爆釜冲击波的反射波与射流火焰耦合诱导二次爆炸,冲击波强度二次急剧上升;传爆釜中冲击波强度随管道长度增加而增大,管道长4 m时,火焰传播持续加速,而管道长6和10 m时,火焰传播速度先增高后降低。  相似文献   

10.
管道燃气爆炸特性实验研究   总被引:5,自引:3,他引:2  
管道是化工及油气储运系统的重要组成部分,却时常受燃烧爆炸事故的威胁,因此对管道中燃气燃烧爆炸特性与规律的研究就十分必要。以甲烷作为研究对象,采用压力传感器以及火焰传感器等对水平封闭管道内甲烷-空气预混燃烧爆炸进行了实验研究,通过大量实验来研究可燃气体爆炸压力与火焰及其传播变化规律。根据实验结果将超压以及气体燃烧的变化情况,对前驱冲击波与火焰面的相对时间及相对位置关系进行了分析。结果显示,管道中会产生前驱压力波,并超前火焰阵面甲烷气体在管道传播过程中,出现冲击波反压射、波叠加及反冲现象,压力的持续时间较火焰光信号持续时间长。所做的工作为油气受限空间中燃气燃烧爆炸特性与规律的进一步研究及工业防爆抑爆技术及工艺的实施、系统设计以及关键参数计算提供了理论依据。  相似文献   

11.
为研究不同封闭情况下T型管道中瓦斯爆炸的传播规律,在90°分岔管道中进行瓦斯爆炸实验,管道封闭情况为弱封闭(双PVC薄膜弱封闭)和强封闭(直管封闭或支管封闭)。实验结果表明:在瓦斯浓度为9.5%时,管道中各点处的瓦斯爆炸压力、火焰传播速度和火焰锋面振荡幅度最大,11%次之,8%最小。T型管道中,弱封闭端瓦斯爆炸压力不断减小;火焰传播速度先缓慢增大后减小,随后又快速增大。强封闭端,瓦斯爆炸压力增大;火焰传播速度先缓慢增大后略微下降,随后快速增大后又大幅度下降,甚至出现火焰锋面振荡现象。不同封闭管道中各测点的瓦斯最大爆炸压力和火焰传播速度大小比较可知,直管封闭管道>双PVC薄膜弱封闭管道>支管封闭管道。  相似文献   

12.
为研究三通管不同开口状态下爆炸参数变化规律,基于数值模拟分析管内爆炸湍流动能大小、形态变化特征.研究结果表明:不同开口状态下三通管道内湍流动能峰值最大值均出现在垂直岔管内,垂直管道开口情况下管道内的最大湍动能峰值增大29.86%,水平管道开口情况下该数值降低10.12%,而两端均开口情况下,增大178.45%;管内与湍...  相似文献   

13.
为了研究分岔管道不同封闭状态下瓦斯爆燃火焰阵面传播规律,在自制的T型透明分岔管道内,设置支管端口完全封闭、直管左端口弱封闭,采用光电传感器和压力传感器测试了直管右端弱封闭、完全封闭2种情况下,预混甲烷-空气可燃气体爆燃火焰传播过程中速度、超压参数的变化情况。结果表明:由于分岔的存在,2种封闭状态在支管端点火后瓦斯爆燃火焰阵面在支管中的传播速度均先增大后减小;直管右端弱封闭时,经过分岔后火焰加速向直管两端传播速度基本一致,分别达到86.29 m/s和88.07 m/s;直管右端完全封闭时,火焰向弱封闭端传播速度增大至166.67 m/s,火焰向完全封闭端传播时并不断压缩未燃气体产生高压振荡反馈导致火焰振荡传播现象,火焰速度不断减小至4.84 m/s;管道内瓦斯爆燃超压均迅速上升到达峰值,之后受压缩气体的膨胀和冲击后爆燃产物的振荡作用迅速下降。  相似文献   

14.
为研究分支管道位置对丙烷爆炸火焰传播的影响规律,通过多组数值模拟与已有实验数据对比,分析不同工况下三通管内火焰传播形态变化特征及温度变化。结果表明:向右传播的爆炸气流在支管左侧形成湍流旋涡,火焰受到拖拽及壁面制约,贴支管右侧壁面呈尖刀状传播;封闭管道中,火焰传播受主管道高速前驱压力波回波影响更显著,垂直支管中火焰与高温风险更大;实验支管位置距离点火源5.6 m时岔口处监测点温度高达2 214.08 K,支管位置增加至5.71 m时,支管处湍流旋涡拖拽火焰,使火焰出现中断,支管移至5.825 m后高温火焰无法传播至支管口,支管中的爆炸风险显著降低。研究结果为工业生产三通管支管位置的选择和支管内二次爆炸风险预测提供科学参考。  相似文献   

15.
为了研究管道内氢气的爆燃转爆轰及其抑制过程,对单个障碍物管道中氢气-空气混合物燃爆过程以及多级泄爆进行了二维数值模拟。基于氢气-空气19步详细化学反应动力学机理,以及k-ε湍流模型、概率密度函数输运方程和同位网格SIMPLE算法,采用计算流体软件Fluent进行模拟。结果表明:密闭管道无泄爆时,在距点火端1.5 m左右爆燃转为爆轰;泄爆口的位置对管道内氢气-空气预混气体的爆炸参数有重要影响,泄爆口位于管道中部时,能降低管道内爆轰超压,泄爆效果较好;位于管道中部单个泄爆口泄爆时,有效降低爆轰超压,管道中部设置2个泄爆口时,能通过压力和混合气体的泄放将管道中已经发生的爆轰衰减为爆燃;当有3个泄爆口泄爆时,管道中没有发生爆轰,达到良好的泄爆效果。  相似文献   

16.
为了研究大尺寸通风管网中的瓦斯爆炸传播规律,采用数值模拟方法,针对具有不同障碍物数量的大尺寸通风管网模型,利用Fluent分析管网中各个监测点的超压变化曲线以及障碍物附近的速度矢量图,分析爆炸冲击波传播规律。研究结果表明:初期瓦斯爆炸后,障碍物的存在改变了通风管网内未燃瓦斯的积聚区域;高温和高压发生耦合作用,在氧气相对充足的进气管道中形成二次爆炸;障碍物与火焰波以及管网自身结构变化等多种因素形成复合作用,改变了通风管网内瓦斯爆炸冲击波的传播路径和叠加区域的位置;无障碍物时高压区域出现在进气管道中,有障碍物时高压区域出现在中部直管与斜管的交汇处附近,且数值相对较大。  相似文献   

17.
为了研究不同形状障碍物对瓦斯爆炸传播的影响机理,对直径0.2 m、长6.5 m的密闭直管道内的瓦斯爆炸过程进行数值模拟。研究结果表明:在该实验条件下,对于火焰通过整个管道的时间,方形障碍物时间最长,球形障碍物与无障碍物时间接近,且用时最短;无障碍物时,在反射压力波作用下火焰传播速度存在明显的波动特性;有障碍物时,障碍物的诱导作用要大于反射压力波的作用,火焰传播的这种波动特性得到抑制,提升了火焰前锋向未燃区域传播的能力;压力波的波动频率与气流震荡、压力波反射叠加有关,波幅则主要与正向压力波和反射压力波的叠加效果有关。研究结果为煤矿瓦斯爆炸事故防治及隔抑爆技术应用提供技术支撑。  相似文献   

18.
为研究置障条件下不同分岔角度管道中瓦斯爆炸压力变化规律,采用长15 m、截面为160 mm×100 mm的矩形和直径160 mm的半圆形组成的拱形模拟巷道,通过改变分岔角附近障碍物的形状与阻塞比,研究瓦斯爆炸在30~45°与30~60°双分岔管道分岔角附近的压力变化规律。结果表明:瓦斯爆炸在30~45°和30~60°双分岔管道中,分岔角后2支管压力均有所增大,且45°和60°支管中压力变化较30°支管更加明显;障碍物位于30°分岔角后,当阻塞比为0.4时,障碍物形状对2~4测点爆炸压力的影响均表现为矩形最大,拱形次之,圆形最小;管道中矩形障碍物对2,3测点爆炸压力的影响随阻塞比增加而增大,对测点4爆炸压力的影响则随阻塞比的增加而减小;设置矩形障碍物时,30~45°双分岔管道中2,3测点的压力增幅大于30~60°双分岔管道,且压力增幅随阻塞比增加而增大,而测点4的表现则相反,30~60°双分岔管道大于30~45°双分岔管道,且压力增幅随阻塞比增加而减小。  相似文献   

19.
为探究采空区遗煤、松散破碎岩块对瓦斯爆炸的影响,建立缝洞型管道模型,采用数值模拟与理论分析结合方法研究采空区内缝洞型管道内瓦斯爆炸的传播规律及管道长径比对瓦斯爆炸过程中速度与冲击波的影响。研究结果表明:在缝洞型结构内,随着火焰沿管道向前传播,各监测点速度逐渐变大、压力先增加后降低,而压力上升速率则表现出不规则的变化;缝洞结构加剧了火焰燃烧的剧烈程度,提高了管道内各监测点的温度峰值;在缝洞型管道内随长径比r增加,各监测点最大压力峰值以及速度大小依次降低。  相似文献   

20.
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号