首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 187 毫秒
1.
针对当前地铁十字换乘车站缺少火灾场景系统性分析和评估的问题,釆用1∶10的地铁多线换乘车站火灾实验模型,进行十字换乘车站的火灾场景设计和对应全尺寸火源热释放率0.91~2.60 MW的火灾实验,研究十字换乘车站内站厅及站台危险位置发生火灾时的优化排烟方案。结果表明:站厅一端火灾时,站厅排烟可确保中部换乘通道和站厅另一端楼梯及出口在起火6 min内不受烟气影响;站厅中部火灾时,采用站厅排烟能保障站厅两端楼梯及出口作为疏散通道的安全性。地下2层站台或地下3层站台一端楼梯口发生火灾时,采用站台排烟与站厅送风联动的模式可控制烟气在站台内的扩散范围,确保站台未起火楼梯和站厅层在起火6 min内能够作为安全疏散通道;仅采用站台排烟可以控制烟气在站台内水平方向的扩散,但在火源功率较大时烟气会通过换乘通道和楼梯进入站厅。通过模型实验验证十字换乘车站中采用站厅站台联合通风模式的有效性,并提出多种火源功率、通风模式下的烟气扩散范围和规律,为十字换乘车站的烟气控制模式优化提供了数据支撑。  相似文献   

2.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。  相似文献   

3.
为研究地铁“T”形换乘车站通道火灾时站厅不同防烟分区通风系统联动模式的烟气控制效果,采用火灾动力学软件FDS构建了换乘通道内乘客行李火灾场景,对起火通道、两侧站厅通风系统和防火门不同联动模式下的顶棚烟气温度、人眼高度及危险高度的CO浓度和能见度进行计算模拟。结果表明:关闭起火通道防火门能够将烟气控制在局部区域,但会加快通道内CO浓度上升和能见度下降的速度;各防烟分区通风系统均执行排烟动作虽然会导致烟气向两侧站厅蔓延,但危险高度的能见度始终在安全逃生的最低限值以上;烟气扩散至补风防烟分区时,新鲜空气与烟气的掺混将加快烟气沉降速度,不利于人员疏散和应急救援。  相似文献   

4.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。  相似文献   

5.
为探究平行换乘车站火灾烟气扩散特性及排烟优化模式,利用1∶10地铁换乘车站模型,在公共站厅、站台、单洞单线隧道、单洞双线隧道中设计多种火灾场景,分析各区域内的顶棚温度分布情况。结果表明:公共站厅不同位置发生火灾时,各区域内的烟气蔓延特性和通风排烟效果不同;站台火灾时,打开屏蔽门能增大补风量,延缓火源上方的升温过程,降低站台内部温升,并且在联合站台及两侧隧道排烟时仅开启火源附近6个屏蔽门有利于提高排烟效率;单洞单线隧道火灾时烟气温度相对较高,单洞双线隧道火灾时,近火源区域内起火隧道和未起火隧道的烟气分布特性不同,烟气可通过打开的屏蔽门蔓延至临近站台,开启隧道排烟及站台送风后能有效减小温升幅度和烟气扩散范围。实验结果可为平行换乘车站中的火灾烟气通风控制方案提供数据支撑。  相似文献   

6.
为了研究地铁同站台高架换乘车站火灾情况,在地铁同站台高架换乘车站站厅层应急疏散路径关键节点部位开展0.25~0.75 MW规模的全尺寸实验,结合流速、烟气温度和现场观测情况,对自然通风条件下不同部位起火时的火灾危险性进行分析。结果表明:该结构车站站厅火灾危险程度受火源规模、装修形式和通风条件的影响,站厅中部闸机附近起火时,火源阻塞了站厅中部的疏散路径,掺混大量空气的低温烟气在站厅两侧出站闸机处沉降至地面高度;楼扶梯入口处起火时,站内各区域能够形成稳定的烟气分层,人眼高度能见度较高;出入口附近起火时,受自然风的影响,火源下风向区域烟气沉降严重,人眼高度的能见度较低,不利于人员疏散;在实验火灾规模下站厅各区域沉降至危险高度的烟气最高温度为30~41℃。针对此类结构车站站厅的防排烟设计,应综合考虑出入口空间布局和吊顶形式对火灾危险性的影响,利用自然风压形成一定通风换气量,同时,应将掺混空气的低温烟气控制在较小区域内,确保人员疏散路径的能见度和烟气浓度处于安全水平。  相似文献   

7.
为研究地铁同站台高架换乘车站火灾烟气蔓延特性和防排烟技术,对具有该换乘形式的某实体车站进行全尺寸火灾实验方案设计,结合车站通风排烟模式和列车运行模式,对站厅层、站台层和设备区分别设计不同规模的火灾场景,同时在站内各防烟分区设计安装烟气温度测量装置和流速测试装置,实现同站台高架换乘车站不同结构空间内烟气危险性参数的实时测量。按照本文设计的实验方案在该车站开展了一系列全尺寸实验,后续的研究中将详细介绍不同火源规模、火源位置、通风方式和列车运行模式下的实验结果。  相似文献   

8.
为了解在不同通风模式下地铁十字换乘车站站台火灾发展规律,通过在地铁十字换乘车站站台开展全尺寸火灾实验,分析了不同通风模式下站台层火灾的烟气扩散速率、沉降高度和扩散范围。研究结果表明:该类型车站站台火灾烟气扩散受到建筑结构和通风条件等因素的影响;在A线路站台层发生火灾时,站台断面面积沿烟气扩散方向的缩小有效抑制了烟气向远端扩散;站台机械通风能够有效降低烟气扩散速率,控制烟气扩散区域和沉降高度;在0.5 MW火灾规模下,A线路站台火灾对B线路影响不明显。  相似文献   

9.
为研究地铁网络化运营枢纽车站火灾烟气扩散特征和防排烟技术,根据工程资料和标准规范对典型多线换乘车站进行1∶10火灾实验模型设计,并依据设计方案完成车站模型主体结构和通风排烟系统的搭建,同时在各个防烟分区设计安装温度、流速、烟气浓度和热辐射测量装置,可实现对“T”形、“十”形和“L”形换乘等不同换乘形式车站的火灾场景模拟和危险参数测量。研究结果表明:该模型装置能够开展一系列针对不同换乘形式和通风模式的火灾实验,对于全面揭示大型换乘车站火灾烟气运动规律、验证并优化火灾防排烟设计方法、支撑复杂结构枢纽车站火灾烟气控制技术具有重要意义。  相似文献   

10.
为确定大埋深新型分离式地铁车站火灾情形下的合理通风排烟模式和排烟参数,以站厅和站台通过扶梯长通道相连的深埋地铁车站为研究对象,采用数值模拟方法分析火灾发生时在深埋车站内不同区域,车站和扶梯通道内烟气的运动过程及其防控方式。结果表明:对站台层与站厅层、长通道火灾的有效应急响应所需排烟参数相差较大,所需风机匹配运行的排烟模式也不相同;站台层火灾的排烟需采取车站与隧道风机的合理匹配运行模式,站厅层和长通道内的火灾则只需开启站厅排烟风机即能使楼梯口的风速达到临界风速的要求;所提出的排烟模式和排烟参数适用于该类型车站的火灾防排烟设计。  相似文献   

11.
为研究典型地下双层岛式结构地铁站站厅火灾状况下烟气温度变化规律,以南昌地铁3号线为例,分别运用PyroSim数值模拟软件和热烟测试,研究典型地下双层岛式结构地铁站站厅火灾发生6 min时间段内站厅烟气沉降时间、温度变化规律。结果表明:火灾发生6 min前,高温烟气层沉降高度主要在3.5 m及以上,烟气未沉降至能威胁人员的高度;站厅两端出入口数量不同,导致烟气呈现非对称扩散,出入口补风效果越好,烟气凝聚越少,温度越低;靠近送风口区域与附近区域相比,温度普遍较低。研究结果可为典型地下双层岛式结构地铁站站厅火灾温度传播规律研究提供参考。  相似文献   

12.
利用火灾动力学模拟方法,对地下一层地铁侧式车站列车火灾的烟气蔓延规律和排烟效果进行了模拟研究。首先生成了地铁车站的三维模型,基于通风排烟系统的事故运行方案,对列车火灾烟气扩散过程、气流组织模式和烟气参数进行了计算模拟。模拟表明:排烟系统启动后,中间隧道的两端向内形成了大于5m/s的流速,屏蔽门处流速为站台流入隧道,可有效阻碍烟气进入站台区域,烟气排放主要通过车站轨顶风口排放,烟气在500s左右进入站台,排烟系统有效减缓烟气在站台的下降时间,为列车内乘客疏散提供了可用的安全疏散时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号