首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
针对水力压裂区域化瓦斯增透盲区,提出了水力割缝局部化瓦斯增透技术措施,形成了复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术,并进行现场验证。研究结果表明:水力压裂区内的3个压裂钻孔平均瓦斯抽采纯流量较238底板道常规抽采钻孔单孔瓦斯抽采纯流量提高15.8倍,瓦斯抽采浓度提高4%,压裂区瓦斯抽采纯流量较对比区提高2.1倍,但水力压裂区域性措施受断层及煤层硬度等地质条件限制,存在盲区;水力割缝增透区内的抽采钻孔瓦斯浓度平均提高4.9倍,瓦斯纯流量平均提高3.3倍,对不同地质条件的适应性强,但是割缝影响范围小,抽采时效短;复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术综合了水力压裂与割缝的优点,对复杂地质煤层具有较强适应性,大幅提高了瓦斯治理水平。现场验证结果表明复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术在复杂地质条件下煤层强化抽采中有较好的实际应用价值。  相似文献   

2.
针对水力压裂区域化瓦斯增透盲区,提出了水力割缝局部化瓦斯增透技术措施,形成了复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术,并进行现场验证。研究结果表明:水力压裂区内的3个压裂钻孔平均瓦斯抽采纯流量较238底板道常规抽采钻孔单孔瓦斯抽采纯流量提高15.8倍,瓦斯抽采浓度提高4%,压裂区瓦斯抽采纯流量较对比区提高2.1倍,但水力压裂区域性措施受断层及煤层硬度等地质条件限制,存在盲区;水力割缝增透区内的抽采钻孔瓦斯浓度平均提高4.9倍,瓦斯纯流量平均提高3.3倍,对不同地质条件的适应性强,但是割缝影响范围小,抽采时效短;复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术综合了水力压裂与割缝的优点,对复杂地质煤层具有较强适应性,大幅提高了瓦斯治理水平。现场验证结果表明复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术在复杂地质条件下煤层强化抽采中有较好的实际应用价值。  相似文献   

3.
为了提高井下低透气性煤层瓦斯抽采效果,提出井下穿层长钻孔水力压裂强化增透技术。根据水力压裂施工工艺和关键技术,将水力压裂过程分为准备阶段、高压注水阶段和保压阶段,重点阐述了封孔、试压、注水压裂、数据监测、保压、排水等关键技术。同时分析了长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂过程中压裂参数变化规律,从煤储层参数和钻孔瓦斯抽采参数方面综合考察了试验效果。结果表明:压裂后煤层透气性系数提高了2.67倍,最大影响半径达到了58 m,抽采流量和抽采体积分数分别是普通压裂钻孔的24.4倍和10.27倍,最大压裂影响半径提高了2.32倍。  相似文献   

4.
随着开采深度的增加,辛置煤矿瓦斯涌出量显著增大。为了提高瓦斯抽采效率,拟采用水力压裂卸压增透技术。理论分析了水力压裂对煤层的卸压增透作用,基于此利用RFPA模拟软件对辛置煤矿2-559回采工作面水力压裂卸压增透进行了数值模拟。研究表明,水力压裂主要在以下3个方面对煤体起到增透作用:使煤体卸压、提高煤层透气性;湿润煤体,增加塑性;改善瓦斯抽放环境。辛置煤矿2-559回采工作面水力压裂所需压力约为15MPa,压裂半径为5-6m,以此可以初步确定现场施工过程中水力压裂钻孔间距以不大于10m为宜。  相似文献   

5.
针对突出煤层巷道掘进中瓦斯治理难题,打通一矿采用了穿层钻孔水力压裂增透防突技术。基于弹性理论和拉应力破坏准则,建立了穿层钻孔煤巷条带水力压裂起裂压力计算模型;在W2706S回风巷的底板瓦斯抽采巷中进行了压裂试验,考察了压裂前后瓦斯抽采效果。现场试验结果表明,压裂后掘进巷道瓦斯抽采量呈现先快速增加、后缓慢上升并保持稳定的变化规律;压裂后穿层钻孔单孔瓦斯抽采量、瓦斯抽采浓度分别是压裂前的1.24~5.61,1.4~2.27倍,W2706S回风巷平均每月的掘进速度增加了34.1%;掘进期间未出现超标现象,穿层钻孔煤巷条带水力压裂增透消突效果显著。  相似文献   

6.
为提高水力压裂技术在瓦斯治理方面的效果,增强适用性,针对本煤层压裂工艺的局限性以及软煤难以改造的现实,采用理论分析和现场试验相结合的方法,探讨顶板水力致裂高效抽采瓦斯机理;根据顶板水力压裂的特点,提出顶板顺层、顶板穿层、顶板多分支等3种水力压裂实施工艺方案,并在生产矿井进行现场试验。研究结果表明,顶板水力致裂增透后,大量瓦斯得以快速解吸,并以最短距离扩散至顶板裂隙"网络系统",然后经岩层抽采钻孔以渗流形式快速产出;经考察,压裂后平均瓦斯流量较压裂前提高了54倍,瓦斯突出效检指标值大幅降低,瓦斯治理效果显著。  相似文献   

7.
煤层水力压裂合理参数分析与工程实践   总被引:3,自引:2,他引:1  
煤层水力压裂技术是近年来应用于高瓦斯低透气性突出煤层的一种卸压增透消突技术,人们对水力压裂的卸压增透消突机理有了较充分的认识,现场工程应用的效果也较好,但有关煤层水力压裂参数是如何确定的系统分析却是很少。笔者在阐述水力压裂机理及压裂过程的基础上,系统地阐述高瓦斯低透气性突出煤层水力压裂所需的注水压力、流量、注水时间、注水速度、孔间距、封孔长度等技术参数以及煤体内在因素的影响作用;最后在义安矿FD003工作面进行了水力压裂试验研究和效果考察,得出适合义安矿的水力压裂合理注水参数。通过水力压裂,煤层瓦斯抽放量和抽放浓度得到大幅度提高,达到了卸压增透防突效果,同时起到了润湿煤体和降尘效果。  相似文献   

8.
为了解决煤与瓦斯突出煤层穿层钻孔施工和水力化措施期间的瓦斯喷孔问题,通过实验和分析研究了水对瓦斯煤流固耦合系统解吸和渗流的影响。煤体含水率增加后,瓦斯解吸的初速度下降,解吸量变小;煤层中注水后,煤体吸附瓦斯量减少,游离瓦斯量和煤的渗透率增加,瓦斯流动更容易,二者共同的影响减少了瓦斯喷孔发生概率。现场实验表明:先注后冲技术降低喷孔率39%,钻孔成孔率提高32%,冲泄煤量提高2.3倍,瓦斯抽出率平均提高10.4%。先注后冲技术与传统水力冲孔技术相比能明显抑制瓦斯喷孔、增加冲泄煤量、提高瓦斯抽出率,是一种安全可靠的煤层增透和预防瓦斯喷孔技术。  相似文献   

9.
为了解决煤与瓦斯突出煤层穿层钻孔施工和水力化措施期间的瓦斯喷孔问题,通过实验和分析研究了水对瓦斯煤流固耦合系统解吸和渗流的影响。煤体含水率增加后,瓦斯解吸的初速度下降,解吸量变小;煤层中注水后,煤体吸附瓦斯量减少,游离瓦斯量和煤的渗透率增加,瓦斯流动更容易,二者共同的影响减少了瓦斯喷孔发生概率。现场实验表明:先注后冲技术降低喷孔率39%,钻孔成孔率提高32%,冲泄煤量提高2.3倍,瓦斯抽出率平均提高10.4%。先注后冲技术与传统水力冲孔技术相比能明显抑制瓦斯喷孔、增加冲泄煤量、提高瓦斯抽出率,是一种安全可靠的煤层增透和预防瓦斯喷孔技术。  相似文献   

10.
低渗煤层高压水射流割缝增透技术试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
霍尔辛赫煤矿为高瓦斯矿井,3号煤层为较难抽放煤层,如何有效增加3号煤层透气性、提高瓦斯抽采效果,成为矿方亟需解决的问题。为此,采用自主研发的瓦斯抽采孔水力作业机,开展了低渗煤层高压水射流割缝增透抽采瓦斯技术试验研究。研究表明:经高压水射流割缝后,瓦斯抽采钻孔的平均抽采浓度增加3.87~9.31倍,平均抽采纯量增加2.67~7.33倍,增透效果显著;割缝钻孔出煤量为2.3~3.4 t,使钻孔周围煤体地应力得以有效释放,这也正是瓦斯抽采效果显著提高的主要原因。  相似文献   

11.
胡杰    孙臣   《中国安全生产科学技术》2017,13(10):48-52
为研究水力冲孔措施下煤层瓦斯高效抽采钻孔合理布置参数,提高煤层瓦斯抽采效率,以平煤十三矿己15-17-13051工作面为例,对水力冲孔有效影响半径进行效果考察。通过布置多组试验钻孔,分别对水力冲孔措施前后钻孔瓦斯浓度、瓦斯流量数据进行综合考察,结果表明:水力冲孔措施增大了煤层透气性系数,高效提升了煤层瓦斯抽采率,执行冲孔措施后瓦斯浓度最低可提高至2.05倍、瓦斯纯流量增至2.56倍以上,采用瓦斯流量法确定了己15-17煤层水力冲孔措施实际有效影响半径为4.8~5.9 m,对于指导煤层瓦斯抽采钻孔合理布置具有指导性意义。  相似文献   

12.
为了研究高河煤矿地面压裂钻井作业对井下煤层瓦斯抽采效果的影响,以3#煤层E2307工作面为主要考察对象,对水力压裂前后煤层渗透率、抽采瓦斯浓度和纯量进行统计分析。研究结果表明:地面压裂钻井水力压裂后煤层反演渗透率提高了13倍以上;压裂后瓦斯浓度最大增幅为122%,最小增幅为34%,平均增幅为71%,同样,瓦斯纯量也有大幅度的提高。研究认为高河煤矿地面水力压裂作业对其高瓦斯含量、低渗透性煤层具有良好的应用前景,对同类煤矿及煤层提高瓦斯抽采效率,预防井下瓦斯动力灾害具有积极的借鉴意义。  相似文献   

13.
为解决高瓦斯矿井开采过程中煤体透气性差、瓦斯预抽周期长、抽采效果不佳的难题,提出利用深孔预裂爆破技术提高煤体裂隙发育度,增加煤体透气性,从而提高瓦斯抽采率的方法。通过现场调研、理论分析、数值模拟及工业性试验等方法,分析深孔预裂爆破卸压增透内在机理,确定爆破影响半径为4.5~5.3 m,并在A110605工作面进行现场应用,同时考察煤层增透效果。研究结果表明:煤层爆破致裂后,平均瓦斯抽采浓度提高了2.17倍,平均瓦斯抽采纯量提高了2.02倍,煤层透气性系数提高了近5.3倍,煤层卸压增透效果显著,很大程度上消除了煤与瓦斯突出危险性,为实现工作面的安全开采及正常接替提供了保障。  相似文献   

14.
高瓦斯低透气性煤层水力压裂技术的试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
由于某矿煤层透气性低、瓦斯含量高,现有瓦斯抽采技术不能满足瓦斯抽采的需要,因而采用了水力压裂技术增透措施进行试验。通过该矿11-2煤层的工业试验,分析了水力压裂技术的参数选择、压裂范围、煤层透气性、压裂后抽采效果等。试验研究得出,经过水力压裂,煤层的透气性提高了2246倍,煤层瓦斯抽采效率也大幅提高  相似文献   

15.
对塑性松软煤体进行水力挠动较难取得理想的瓦斯增浓提效效果,为克服该措施的局限性,使松软煤层有效卸压增透,可将挠动对象转移至煤层顶板砂岩。基于对顶板砂岩水力挠动裂隙发育、延展及煤层卸压增透机理分析,在试验矿井的松软煤层及顶板砂岩中分别施工钻孔进行水力挠动试验,同时采用多级指标对措施后的瓦斯抽采效果进行考察。结果表明:水力挠动作用下砂岩体内部形成有利于下部煤层瓦斯流动的裂隙网络,抽采流量、浓度及累计抽采纯量大幅提高;但由于高压水作用下松软煤体内部发生塑性变形、裂隙堵塞、瓦斯流动性弱化,导致抽采流量、浓度及累计抽采纯量不升反降。研究结果可为松软煤层实施水力挠动提供参考,以期实现较理想的瓦斯治理效果。  相似文献   

16.
在煤层增透方面,穿层水力扩孔冲出煤量主要依据经验以及遵循“能冲尽冲”的原则,致使串孔现象严重,针对这一问题,采用理论分析、数值模拟结合工程试验的方法,阐明了串孔致因机理和串孔前后扩孔孔硐内负压损失分布特征,构建了考虑吸附膨胀应力和Klinkenberg效应的扩孔孔硐附近煤体瓦斯流动流-固耦合数学模型,利用Comsol软件,模拟了不同冲煤量下扩孔孔硐附近煤体所受应力分布和煤体渗透率的变化情况。研究结果表明:随着煤体不断被冲出,孔硐有效抽采半径相对变化率呈现衰减趋势;扩孔孔硐附近最大主应力呈现先急剧减小再增大,然后降低直至原始应力大小的趋势;渗透率的变化趋势与最大主应力恰好相反;扩孔孔硐周围煤体渗透率的增加主要受煤体的径向位移所控制,孔硐周围煤体大幅径向位移会产生串孔现象,渗透率虽得到大幅度提高,但瓦斯抽采效果和安全采掘很难保证,需要厘定出水力扩孔合理冲出煤量。  相似文献   

17.
针对定量确定合理钻孔间距困难问题,基于损伤力学和多场耦合理论,建立了水力压裂和瓦斯抽采的煤层流固耦合模型,包括和水运移场、应力场以及孔隙度、渗透率演化方程,并采用Comsol联合Matlab求解,研究了不同钻孔间距时压裂和抽采过程中煤层弹模、损伤值、渗透率、瓦斯压力、抽采量和压裂贯通时间的变化规律。结果表明:耦合模型可较准确地模拟煤层水力压裂和瓦斯抽采过程;压裂贯通时间与钻孔间距呈指数增长关系;在马堡煤矿,当钻孔间距为4~8 m时,压裂损伤区在抽采孔贯通,渗透率呈“n”型曲线,瓦斯抽采后,瓦斯压力迅速下降,抽采有效区随间距的增加而增大;当钻孔间距为9~12 m时,压裂损伤区未贯通,煤层渗透率呈“m”型曲线,抽采有效区随间距的增加而减小,与间距4~8 m相比,瓦斯抽采量较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号