首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total,dissolved, and bioavailable metals at Lake Texoma marinas   总被引:2,自引:0,他引:2  
Dissolved metals in water and total metals in sediments were measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg and K. Elevated Cu levels detected in lake water appeared to be associated with Cu based anti-fouling paint used on boats. Metal concentrations in sediment were much higher than in water. The relative order of the concentration in sediment was Ca > Al > Fe > K > Mg > Na. Elevated Cu level at specific locations appeared to be associated with local anthropogenic sources of boat repair activities. There were positive relationships between several metal elements in water and sediment. Metals in 16 sediments from lake marinas were extracted with a weak electrolyte solution [0.1 M Ca(NO3)2] to predict the bioavailability of metals. Among the five heavy metals studied (As, Cd, Cr, Cu and Zn), Cu was the most bioavailable in Lake Texoma marinas.  相似文献   

2.
Concentration of heavy metals and natural gross radioactivity were measured in the surface water and sediment of Hazar Lake (Elazi?, Turkey). Eight sampling sites were pre-defined in different locations of the lake. A preliminary study on heavy metals (Zn, Fe, Mn, Ni, Cu, Cr, Co and Pb), major elements (Na, K, Ca, Mg) concentrations and natural radioactivity related to 226Ra, gross-alpha and gross-beta radiations in the surface water and deep sediments were determined. The obtained results showed that, in general, the heavy metals (Zn, Fe, Mn, Ni, Cu and Pb) and major elements (Na, K, Ca, Mg) concentrations in water did not exceed WHO (World Health Organization, 1999), EC (Europe Community, 1998), EPA (Environment Protection Agency, 2002) and TSE-266 (Turkish Standard, 1997) guidelines. Generally, heavy metals and major elements concentration of the sediments were found decrease in sequence of Fe>Mg>Ca>Mn>Zn>Ni>Cr>Cu>Co>Pb. The results of this study indicated that a general absence of serious pollution in the Hazar Lake. The results obtained from the radioactivity determination indicate that the surface water radioactivity concentration of 226Ra, gross-alpha and gross-beta were ranging from 0.52+/-0.02 to 2.02+/-0.06 Bq/l and from 0.65+/-0.03 to 2.52+/-0.07 Bq/l and from 0.01+/-0.01 to 0.14+/-0.01 Bq/l, respectively. Deep sediment radioactivity concentrations of 226Ra is ranging from 0.07+/-0.03 to 0.32+/-0.07 Bq/g.  相似文献   

3.
Cheung KC  Poon BH  Lan CY  Wong MH 《Chemosphere》2003,52(9):1431-1440
The effects of anthropogenic activities, industrialization and urbanization on the accumulation of heavy metals and nutrients in sediments and water of rivers in the Pearl River Delta region were examined. Most sediments were seriously contaminated with Cd, Pb, and Zn in accordance with the classification by Hong Kong Environmental Protection Department. Total phosphorus (P) and nitrogen (N) concentrations in sediments ranged from 0.02% to 0.12% and 0.06% to 0.64%, respectively. High carbon (C), N, P and sulphur (S) levels at Yuen Long Creek were related to the discharge of industrial effluents along the river. The enrichment of P and ammoniacal-nitrogen (NH4+-N) in water were obvious. For most sites, the P concentration exceeded 0.1 mg/l, which is the recommended concentration in flowing water to encourage excessive growth of aquatic plants. Nine out of the 16 sites studied had NH4+-N concentration over 2 mg/l. The rivers in the south of Deep Bay (Hong Kong) had high nutrient exports compared with the rivers in the east region and western oceanic water. The concentrations of nitrate-nitrogen NO3--N in surface water were under the maximum contaminant level in public drinking water supplies (10 mg/l) except for one site. Although the concentrations of heavy metals in overlying water were low, their accumulations were significant. High contents of nickel (Ni) and zinc (Zn) in water were found at certain locations, suggesting the occurrence of some local contamination. These preliminary results indicated that river and sediment transported pollutants is likely one of the factors for the water quality degradation of Deep Bay water.  相似文献   

4.

Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0–10 cm) and deeper sediments (>10 cm). The interstitial water Ca2+ and Mg2+, ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid deposition and eutrophication on freshwater lakes.

  相似文献   

5.

Can Gio district is located in the coastal area of Ho Chi Minh City, southern Vietnam. Discharge of wastewater from Ho Chi Minh City and neighboring provinces to the rivers of Can Gio has led to concerns about the accumulation of trace metals (As, Cu, Cr, Ni, Pb, and Zn) in the coastal sediments. The main objective of this study was to assess the distribution of As, Cu, Cr, Ni, Pb, and Zn in surface and core sediments and to evaluate the contamination status in relation to local background values, as well as the potential release of these selected trace metals from sediments to the water environment. Sediment characteristization, including determination of fine fraction, pH, organic matter, and major elements (Al, Fe, Ca, K, Mg, and S), was carried out to investigate which parameters affect the trace metal enrichment. Fine fraction and Al contents were found to be the controlling proxies affecting the distribution of trace metals while other sediment characteristics did not show any clear influence on trace metals’ distribution. Although As concentrations in the sediments were much higher compared to its reference value in other areas, the enrichment factor based on local background values suggests minor contamination of this element as well as for Cr, Cu, and Pb. Risk assessment suggested a medium to very high risk of Mn, Zn, and Ni under acidification. Of importance is also that trace metals in sediments were not easily mobilized by organic complexation based on their low extractabilities by ammonium-EDTA extraction.

  相似文献   

6.
Ryba SA  Burgess RM 《Chemosphere》2002,48(1):139-147
The elemental composition of marine sediment provides useful information for the study of environmental processes including biogeochemical cycling and contaminant partitioning. It is common practice to acidify marine sediment samples to remove carbonate before measuring the concentrations of organic carbon (C). To date, however the effects of acidification on the concentrations of hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) in marine sediments have not been explicitly addressed. Acidification may contaminate or alter the sediment samples and create experimental artifacts affecting the validity of resulting H/C, C/N and O/C ratios. The objective of this study was to quantify how various preparation techniques affect the measured concentrations of C, H, N, S and O in marine sediments. Effects of four different pretreatments: unacidified (whole), acidification by HCl vapor, acidification by direct addition of HCl, and combustion were evaluated using five marine sediments and a standard reference material. The magnitude of carbonate loss between the vapor and direct acidification treatments was evaluated using stable C isotope analysis. Carbonates were most effectively removed by direct addition of HCl; and our results agree with findings of other studies which found direct addition of HCl to be the most accurate method for measuring organic C. However, the acid treatments elevated the apparent concentration of H and O; and in a few cases concentrations of N and S were significantly affected by acidification. In general, combustion significantly reduced all elemental concentrations compared to the whole sample. Based on these results, we recommend analysis of the untreated whole sediment for determining N, H, O, and S.  相似文献   

7.
Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake Chaohu was 672 pg g?1 dry weight (dw), with a range of 7 to 3999 pg g?1 dw, which was lower than other water bodies worldwide. The majority of heavy metals were detected at all sampling locations, except for Sr, B, and In. Concentrations of Al, Fe, Ca, Mn, Sr, Co, Zn, Cd, Pb, and Hg were similar to that reported for other lakes globally. Concentrations of K, Mg, Na, Li, Ga, and Ag were greater than the average, whereas those of Cr, Ni, and Cu were lower. Cluster analysis (CA) and positive matrix factorization (PMF) yielded accordant results for the source apportionment of PCBs. The technical PCBs and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca–Na–Mg minerals rather than Fe–Mn minerals. The uncorrelated results between organic matter revealed by pyrolysis technology and heavy metals might be caused by the existence of competitive adsorption between organic matter and minerals. PCBs and heavy metals were coupling discharge without organochlorine pesticides (OCPs), but with polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). No sediment sample exceeded the toxic threshold for dioxin-like PCBs (dl-PCBs) set at 20 pg toxicity equivalency quantity (TEQ)?g?1, (max dl-PCBs, 10.9 pg TEQ g?1). However, concentrations of Ag, Cd, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some fundamental solutions were proposed to protect the DWSA.  相似文献   

8.
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.  相似文献   

9.
Meers E  Tack FM  Verloo MG 《Chemosphere》2008,70(3):358-363
Previous research has identified ethylenediaminedisuccinate (EDDS) as a promising biodegradable alternative for persistent compounds such as EDTA for application in soil washing or enhanced phytoextraction of heavy metals. This study examines heavy metal mobilization in three polluted soils varying in soil composition, with specific attention for competitive behaviour for complexation between the various metals and major elements, such as Al, Fe, Mn, Ca and Mg. In addition, amendment biodegradability was compared between the different soil types. The selected soils included a moderately contaminated calcareous clayey soil, a dredged sediment derived surface soil with similar soil characteristics yet more heavily polluted with Cd, Cr and Zn, and a sandy soil moderately contaminated by historical smelter activity (atmospheric deposition). Biodegradability of EDDS in the three soils varied distinctly. This was mainly expressed in the duration of the lag phase prior to metal complex degradation, and not so much in the half life when degradation effectively did set in. Differences in the lag phase were attributed to differences in soil pollution. However, EDDS was fully degraded within a period of 54 d in all soils regardless of initial delay. Assessment of the cation mobilisation patterns in the three soils under study revealed that mainly Ca, Fe and Al can reduce effectiveness of heavy metal mobilisation by competition for complexation.  相似文献   

10.
In order to study the influence of pH on the mobilisation of metals from lake sediments, intact sediment cores with overlying water were sampled from one lime treated lake and one acidified lake. The overlying water of two cores from each lake was successively acidified to pH 4.2 over a period of 3 months. In the acid treated samples from the limed lake, the initial concentrations of Al, Cd, Mn, Pb and Zn in the overlying water were generally lower and the final concentrations were higher than in the acid treated samples from the acidified lake. The labile inorganic fraction of Al (Al(i)) was increasingly dominating as pH decreased. Redox potential and pH in the sediment indicated that the upper two centimetres were involved in the exchange reactions. The experiment showed that mobilisation of metals from sediments can occur and the results indicated that mobilisation could contribute to increased concentrations of metals in lake water during reacidification of formerly lime treated lakes.  相似文献   

11.
Bioleaching of heavy metals from sediment: significance of pH   总被引:16,自引:0,他引:16  
Chen SY  Lin JG 《Chemosphere》2001,44(5):1093-1102
Bioleaching process, which causes acidification and solubilization of heavy metals, is one of the promising methods for removing heavy metals from contaminated sediments. The solubilization of heavy metals from contaminated sediments is governed by the sediment pH. In the present study, the significance of pH in bioleaching of heavy metals from contaminated sediment was evaluated at different solid contents of sediments in a bench-scale reactor. Results showed that a temporal change of pH in the bioleaching process was effected by the buffering capacity of the sediment particulates. The variations of pH in this bioleaching process were calculated by a modified logistic model. It was observed that solubilization of heavy metals from sediments is highly pH-dependent. In addition, a non-linear equation for metal solubilization relating pH value in the bioleaching process was established. This allows an easier and faster estimate of metal solubilization by measuring pH in the bioleaching process.  相似文献   

12.
Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.  相似文献   

13.
The impact of 40 years of sulfur (S) emissions from a sour gas processing plant in Alberta (Canada) on soil development, soil S pools, soil acidification, and stand nutrition at a pine (Pinus contorta x Pinus banksiana) ecosystem was assessed by comparing ecologically analogous areas subjected to different S deposition levels. Sulfur isotope ratios showed that most deposited S was derived from the sour gas processing plant. The soil subjected to the highest S deposition contained 25.9 kmol S ha(-1) (uppermost 60 cm) compared to 12.5 kmol S ha(-1) or less at the analogues receiving low S deposition. The increase in soil S pools was caused by accumulation of organic S in the forest floor and accumulation of inorganic sulfate in the mineral soil. High S inputs resulted in topsoil acidification, depletion of exchangeable soil Ca2+ and Mg2+ pools by 50%, podzolization, and deterioration of N nutrition of the pine trees.  相似文献   

14.
The levels of copper, lead, chromium, zinc, cadmium, arsenic and silver were determined in periphyton specimens obtained with a diatometer collector. Stations selected were along three important bayous of the Calcasieu River system. Distributions of some metals in the organisms were similar to those found in sediment from the same locations, while other metals appeared to be similar to water concentrations. Concentration ratios of periphyton over sediment greatly exceeded one for the metals chromium, zinc, cadmium, arsenic and silver. The concentrations of heavy metals in the periphyton appeared to yield more information about pollutants than either water or sediment samples collected at the periphyton stations.  相似文献   

15.
The application of two different types of elemental sulfur (S0) was studied to evaluate the efficiency on bioleaching of heavy metals from contaminated sediments. Bioleaching tests were performed in suspension and in the solid-bed with a heavy metal contaminated sediment using commercial sulfur powder (technical sulfur) or a microbially produced sulfur waste (biological sulfur) as substrate for the indigenous sulfur-oxidizing bacteria and thus as acid source. Generally, using biological sulfur during suspension leaching yielded in considerably better results than technical sulfur. The equilibrium in acidification, sulfur oxidation and metal solubilization was reached already after 10-14 d of leaching depending upon the amount of sulfur added. The metal removal after 28 d of leaching was higher when biological sulfur was used. The biological sulfur added was oxidized with high rate, and no residual S0 was detectable in the sediment samples after leaching. The observed effects are attributable to the hydrophilic properties of the biologically produced sulfur particles resulting in an increased bioavailability for the Acidithiobacilli. In column experiments only poor effects on the kinetics of the leaching parameters were observed replacing technical sulfur by biological sulfur, and the overall metal removal was almost the same for both types of S0. Therefore, under the conditions of solid-bed leaching the rate of sulfur oxidation and metal solubilization is more strongly affected by transport phenomena than by microbial conversion processes attributed to different physicochemical properties of the sulfur sources. The results indicate that the application of biological sulfur provides a suitable means for improving the efficiency of suspension leaching treatments by shortening the leaching time. Solid-bed leaching treatments may benefit from the reuse of biological sulfur by reducing the costs for material and operating.  相似文献   

16.
Liang Y  Wong MH 《Chemosphere》2003,52(9):1647-1658
An intensive monthly sampling of water and sediments from 12 sites over 8 months covering wet and dry seasons at Mai Po Marshes Nature Reserve was conducted during June 1997-February 1998. Major organic (C, N and P) and heavy metal pollutants (Cd, Cr, Cu, Ni, Pb, Zn) water and sediment samples were examined. The results showed that Mai Po Marshes were severely polluted by organic matter and heavy metals, and the water from Deep Bay appeared to be the source of pollution. Up to 13-55% chance that the sediments of Mai Po Marshes were classified as moderately to seriously metal contaminated materials, according to the guideline set by Hong Kong Government. Empirical models describing organic matter and heavy metal spatial and seasonal dynamics in the water and sediments were formulated, based on data analysis. During wet season (June-October), more than 58% variations of total P can be explained by ortho-P in water, while ammonia-N explained up to 90% variations of total Kjeldahl nitrogen in water. Throughout the whole sampling period (June-February), there were significant correlations (p<0.01) between total organic C in water. pH in the sediments and salinity in water appeared to be important factors determining heavy metal mobility in sediments, while potential metal release from the sediments is a concern when any oxidizing processes such as flooding or dredging are imposed on sediments.  相似文献   

17.
三垟湿地沉积物-间隙水-上覆水界面磷形态研究   总被引:1,自引:0,他引:1  
沉积物与上覆水间营养物质交换,成为导致水体发生富营养化的首要化学变迁过程.分别在三垟湿地的柑橘林(S1)、景观用地(S2)和生活用地(S3)取样,研究了沉积物-间隙水-上覆水界面磷形态以及相互关系.结果表明:(1)沉积物TP增加时,间隙水PO3-4和可溶性总磷(TDP)也增加.要削减磷在上覆水中的含量,控制间隙水PO3-4或TDP是一良策.(2)随着沉积物铁磷、铝磷的增加,间隙水PO3-4也增加.在三垟湿地沉积物中,铁磷和铝磷含量都可作为间隙水PO34-含量的指示.(3)S1、S2和S3的沉积物活性磷、间隙水TDP和上覆水TDP存在明显的浓度梯度,沉积物活性磷>间隙水TDP>上覆水TDP.说明在三垟湿地中,沉积物活性磷是磷释放的关键因子,而沉积物-间隙水界面则是磷释放的关键界面.  相似文献   

18.
西湖沉积物中元素分布特征研究   总被引:2,自引:0,他引:2  
分析测定了西湖沉积物(20m钻探样品)不同层次中Fe、Al、Ca、Mg、Ti、Mn、Cu、Zn、Cd、Ni、Hg、Cr、As、Co、V等15种元素的含量,并根据元素的分布特征探讨了西湖沉积物的形成发展及重金属污染状况。  相似文献   

19.
Six hydrophobic alkylphenolic compounds were investigated for the first time simultaneously in four different matrices in the Danube River. Maximum sediment concentrations were 2.83, 2.10, 0.28, and 0.035 mg kg−1 for nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and octylphenol. Maximum levels in suspended particulate matter (SPM) were 0.18, 0.12, 0.10, and 0.003 mg kg−1. No correlation between concentrations in SPM and sediments was found. Octylphenol monoethoxylate and octylphenol diethoxylate were recorded only in sediment at one location. In mussels and water only nonylphenol and octylphenol were found. Nonylphenol concentrations in mussels (up to 0.34 mg kg−1) correlate with concentrations found in SPM and indicate a slight bioaccumulation. Concentrations in water were close to the limit of quantification. We assume in situ formation of nonylphenol monoethoxylate and nonylphenol in sediments at some locations. In some cases nonylphenol in sediments exceeded the provisional EU environmental quality standards.  相似文献   

20.
Yu GB  Liu Y  Yu S  Wu SC  Leung AO  Luo XS  Xu B  Li HB  Wong MH 《Chemosphere》2011,85(6):1080-1087
Numerous indices have been developed to assess environmental risk of heavy metals in surface sediments, including the total content based geoaccumulation index (Igeo), exchangeable fraction based risk assessment code (RAC), and biological toxicity test based sediment quality guidelines (SQGs). In this study, the three indices were applied to freshwater surface sediments from 10 sections along an urbanization gradient of the Grand Canal, China to assess the environmental risks of heavy metals (Cu, Pb, Zn, Cd, and Cr) and to understand discrepancies of risk assessment indices and urbanization effects regarding heavy metal contamination. Results showed that Cd, Zn, and Pb were the most enriched metals in urban sections assessed by Igeo and over 95% of the samples exceeded the Zn and Pb thresholds of the effect range low (ERL) of SQGs. According to RAC, Cu, Zn, Cd, and Cr had high risks of adversely affecting the water quality of the Grand Canal due to their remarkable portions of exchangeable fraction in surface sediment. However, Pb showed a relative low risk, and was largely bounded to Fe/Mn oxides in the urban surface sediments. Obviously, the three assessment indices were not consistent with each other in terms of predicting environmental risks attributed to heavy metals in the freshwater surface sediments of this study. It is recommended that risk assessment by SQGs should be revised according to availability and site specificity. However, the combination of the three indices gave us a comprehensive understanding of heavy metal risks in the urban surface sediments of the Grand Canal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号