首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K(d)) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants.  相似文献   

2.
Bioavailability of sediment-sorbed compounds may vary with increasing contact time. This may result in the dietary uptake route becoming more significant as conditions in the gut flora aid the extraction of contaminants, which have migrated into sites within the sediment particle. Such mechanisms may have important implications on risk assessments performed on substances released into the environment. A series of experiments were carried out using sediment spiked with 14C-labelled pyrene, a polycyclic aromatic hydrocarbon. The sediment was left at room temperature over a period of 220 days. Periodically (at 0, 1, 14, 28, 70, 220 days) the sediment was used to perform a bioaccumulation study using the freshwater oligochaete Lumbriculus variegatus. A novel methodology using feeding and (decapitated) non-feeding worms, allowed differentiation between uptake via ingestion and simple sorption. Results showed that there was a decline in bioavailability with time and that this was a 3 stage process. A rapid initial decline was observed over the first day when a 40% decrease was measured, an intermediate period were levels remained stable (day 14 to day 70) and an ultimate decrease in pyrene activity in worm tissue of 70% after 220 days. Over this period the chemical extractability of pyrene also decreased by 50%, as the chemical migrated deeper into unavailable sites within the sediment matrix. Normalising bioavailability to the chemically extractable fraction of pyrene within the sediment provided an overall decrease in bioavailability of 58%. The importance of the dietary route of uptake for pyrene varied during the sediment aging process, reflecting the changes in the physico-chemical interactions between the pyrene, sediment and pore water.  相似文献   

3.
The bioaccumulation of inorganic mercury (HgI) and monomethylmercury (MMHg) by benthic organisms and subsequent trophic transfer couples the benthic and pelagic realms of aquatic systems and provides a mechanism for transfer of sedimentary contaminants to aquatic food chains. Experiments were performed to investigate the bioavailability and bioaccumulation of particle-associated HgI and MMHg by the estuarine amphipod Leptocheirus plumulosus to further understand the controls on bioaccumulation by benthic organisms. HgI and MMHg are particle reactive and have a strong affinity for organic matter, a potential food source for amphipods. Microcosm laboratory experiments were performed to determine the effects of organic matter on Hg bioaccumulation and to determine the major route of Hg uptake (i.e. sediment ingestion, uptake from water/porewater, or uptake from 'food'). Amphipods living in organic-rich sediment spiked with Hg accumulated less Hg than those living in sediments with a lower organic matter content. Feeding had a significant impact on the amount of HgI and MMHg accumulated. Similarly, amphipods living in water with little organic matter accumulated more Hg than those living in water with a greater percentage of organic matter. MMHg was more readily available for uptake than HgI. Experimental results, coupled with results from a bioaccumulation model, suggest that accumulation of HgI and MMHg from sediment cannot be accurately predicted based solely on the total Hg, or even the MMHg, concentration of the sediment, and sediment-based bioaccumulation factors. All routes of exposure need to be considered in determining the accumulation of HgI and MMHg from sediment to benthic invertebrates.  相似文献   

4.
The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited.  相似文献   

5.
Experiments were conducted to probe the interactions between natural dissolved organic matter (DOM) and two xenobiotics, and to determine how DOM influences their bioavailability. The experimental set-up, using dialysis bags, was designed to expose test organisms to the same constant concentration of free dissolved chemical, while increasing the concentration of the bound-to-DOM fraction. Daphnia magna S. were exposed to pyrene or 2,2',5,5'-tetrachlorobiphenyl in the presence of 0, 1, 2, 5, 10 or 20 mg L(-1) of a reference riverine humic acid (Suwannee River Humic Acid). The physico-chemical parameters were well constrained in the microcosm, demonstrating its potential usefulness. However bioaccumulation by D. magna showed important variability between replicate treatments, sufficient to mask any trends as a function of DOM concentration. The organic-carbon-normalised partition coefficients (K(OC)) ranged from 52000 to 92000 L kg(-1) for pyrene and from 8200 to 89000 L kg(-1) for 2,2',5,5'-tetrachlorobiphenyl, with a marked "concentration effect" for the latter compound.  相似文献   

6.
Artificial particles, specifically a diverse selection of chromatographical resins, have been recommended and used as a useful experimental model to predict the bioavailability and bioaccumulation of sediment-bound organic chemicals. In this work the same experimental model was adopted to investigate the bioavailability and bioaccumulation of lead by the freshwater oligochaete Lumbriculus variegatus. Particle-water partition coefficients were also determined. Sand particles and the anionic exchange resin promoted a similar uptake and bioaccumulation of lead. Instead, in the presence of the cationic exchanger the metal was not detected in the animals. For neutral particles, the uptake and accumulation depended on the chemistry of the functional groups at the active sites. In addition, a significant negative correlation was found between bioaccumulation and the particle-water partition coefficients. These studies may help to develop alternative methods for chemical remediation of lead-contaminated aquatic systems.  相似文献   

7.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

8.

Background, aim and scope

The influence of pH (range 6.5–8.5) on the uptake of Zn, Cd, Pb, Cu, Ni, Cr, Hg, and As by juveniles of the clam Ruditapes philippinarum was examined in order to understand whether variation in sediment pH has significant repercussions on metal bioaccumulation.

Materials and methods

Clams were exposed to sediments collected in three locations in the Gulf of Cadiz (Huelva, Guadalquivir and Bay of Cadiz) and to contaminated particles derived from an accidental mining spill in Spain.

Results

With a notable exception of metal Cd, the concentration of metals within clams significantly increased (p?<?0.1) when sediment pH was lowered by one or two units. Moreover, the magnitude of this effect was dependent on the type of sediment contamination.

Discussion

Lower pH increases metal solubility and reduces or invert the metal sorption of metals to sediments. Increases in free metal ions in water favors metal uptake by clams, hence pH is an important factor controlling the mobility of these metals within sediments and their subsequent bioaccumulation within biota. Although sediment-water exchange of Cd can increase with acidification, this excess may be counterbalanced by the presence of ligands in seawater preventing the uptake by organism. Besides chlorines, Cd has also an affinity with carbonates and other ligands present in sea water. These Cd-carbonate complexes may reduce the bioavailable to organisms.

Conclusions

These results highlight the potential implications of sediment acidification, either due to the storage excess of organic matter or to the forced capture of CO2, on the increasing metal availability to benthic organisms.

Recommendations and perspectives

This kind of studies should be increased to address the influence of acidification in the behavior, bioavailability, toxicity, and risk assessment of contaminants associated with sediments either above sub-seabed geological formations in marine environments or in high enriched by organic matter in estuarine areas. Recently, the capture of CO2 in marine environments has been approved and started; it is necessary to address the potential impacts associated with leakages or other events occurring during the procedure of injection and storage of CO2.  相似文献   

9.
An assessment was made to monitor the short-term impact of heavily polluted sediments that may move out from the brackish man-made Lake Shihwa outside of the sea dike due to operations of a tidal power plant. Here, we exposed the Manila clam Ruditapes philippinarum collected from the western coast of Korea to natural sediment under lab condition for 96?h. Sediments were collected from Lake Shihwa and outside of the sea dike representing polluted and reference conditions, respectively. The results of chemical analysis revealed that the concentrations of nonylphenol and heavy metals in water and sediment from the inner region of Lake Shihwa were significantly higher than those of reference sediments. After 48 and 96?h of exposure, 30 specimens of clams were sampled from each experimental condition, and concentrations of nonylphenol and metals were measured in clams, water, and sediments. Several biomarkers, including concentrations of metallothionein-like proteins, and activities of the antioxidant enzymes glutathione S-transferase and catalase were determined in clams to characterize the effects of polluted sediments to clams. After 96?h of exposure, R. philippinarum assimilated nonylphenol up to 71 times compared to initial concentrations. However, there was no apparent uptake of heavy metals into the clams. Additionally, antioxidant enzymes exhibited higher activities in clams exposed to the polluted sediment. The results of the present study with physiological responses in R. philippinarum suggest that sediment transportation caused by the operation of a tidal power plant in Lake Shihwa will have striking effects on benthic organisms in the adjacent coastal area.  相似文献   

10.
The objective of this study was to investigate bioaccumulation of nickel (Ni) and vanadium (V) in clams living in different salinity regimes along the Saudi coast of the Arabian Gulf. Several hundred clam (Meretrix meretrix), sediment, and seawater samples were collected from 12 locations. Concentrations of Ni and V were determined in these samples using an inductively coupled argon plasma analyzer. Concentrations of Ni and V in the clams varied between 0.35 and 2.61 mg kg(-1) and between 0.13 and 0.35 mg kg(-1) wet tissue, respectively. Analysis of variance of the data revealed significant (P<0.01) inter- and intra-station variations in Ni concentrations in clams. In contrast, the mean concentration of V in clams from all the stations were statistically similar. Correlation between the biometric characteristics of clams and Ni and V concentrations were not statistically significant. Significant (P<0.05) geographical variations in Ni and V concentrations in the sediment samples were found, with relatively higher concentrations in the northern part of the Gulf where there are many oil fields. Ni and V in the sediments were significantly (P<0.05) correlated, suggesting a common contamination source for these elements. Interactions between Ni and V in clams and sediment were poor.  相似文献   

11.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

12.
The adsorption and desorption of 2,4-dichlorophenol (DCP) and pentachlorophenol (PCP) were studied for a range of synthetic particles, a dimethylditallowammonium exchanged clay and a natural sediment. The synthetic particles were Dowex 1X8400, Toyopearl Phenyl 650M and Toyopearl SP 650M. The bioaccumulation of the DCP and PCP from these particles was then studied using the oligochaete, Lumbriculus variegatus. There is a correlation between contaminant-particle interactions, as determined from adsorption and desorption isotherms, and bioaccumulation. Bioaccumulation by L. variegatus was found to be highest from the systems where differences in the classification of adsorption and desorption isotherms were observed.  相似文献   

13.
Variations in the soil/sediment organic matter (SOM)-hydrophobic organic contaminant (HOC) bindings upon microbially mediated redox conditions were examined. While the extractability of pyrene associated with soil declined after its biodegradation began during aerobic incubation, its variations were almost constant (±3.0-4.4%) during anoxic/anaerobic incubations. The dissolved organic matter released from the soil incubated under highly reduced conditions became more humified and aromatic, had a higher average molecular weight, and was more polydispersed compared to that obtained from oxic incubation, similar to the SOM alterations in the early stage of diagenesis (humification). The concentrations of pyrene in the aqueous phase increased significantly during the soil incubations under highly reduced conditions due to its favorable interaction with the altered DOM. Our results suggest that the microbially mediated redox conditions have significant impacts on SOM and should be considered for the transport, fate, bioavailability, and exposure risk of HOCs in the geo-environments.  相似文献   

14.
Liu CW  Liang CP  Lin KH  Jang CS  Wang SW  Huang YK  Hsueh YM 《Chemosphere》2007,69(1):128-134
This study surveyed the total arsenic (As) and As species contents in clams (Meretrix lusoria) farmed in areas of hyperendemic blackfoot disease (BFD) in southwestern Taiwan. Total As and As species in sediment and pond water were also analyzed to examine the bioaccumulation of As in clams in their exposure environment. Moreover, potential carcinogenic risks associated with the ingestion of As in aquacultural clams were evaluated probabilistically. The average total As contents in medium-sized and small clams were 7.62 and 10.71 microg/g (dry wt), respectively. The content of the As species in this study was approximately 61% of the total As content. The other unquantified As species are possibly arsenocholine, arsenosugar and arsenolipid. The average ratios of inorganic As contents to total As contents in clams ranged from 12.3% to 14.0% which are much higher than that found in the farmed oyster (Crassostrea gigas), indicating that humans may expose to larger quantities of inorganic As by ingesting the same amount of clam as oyster. Using different ingestion rates derived by the average consumption method and the questionnaire method, the estimated risks to human health associated with consuming clams from the BFD area ranging from slightly to largely exceed the standard target risk. Based on the estimation of the TR model, a 0.18g/day-person of the safe ingestion rate of clams in the BFD region is recommended.  相似文献   

15.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

16.
Within the framework of toxicity testing using formulated sediment, a conditioning treatment prior to toxic contamination has been examined. This preliminary step enables the bacterial colonisation of the sediment, the initiation of organic matter degradation, and the establishment of stable biological and physico-chemical conditions. The treatment involved in keeping the formulated sediment under water in conditions similar to that chosen for toxicity tests. The behaviour of a formulated sediment was compared with a natural sediment. The monitoring of physico-chemical and biological parameters of sediment and water column was carried out over a 30-day incubation in two laboratories. The parameters of pH and redox, dissolved organic carbon (DOC), NH4 and NO2, total organic carbon (TOC) were measured. The bacterial community was characterised by the determination of bacterial density, in total bacteria number or colony forming units (CFU), several exoenzymatic activities (P-glucosidase, xylosidase, leucine-amino-peptidase phosphatase and sulfatase activities), and three gas productions (CO2, N2O and CH4). The same experiment was carried out with a natural sediment. A 10- to 15-day conditioning allowed a physico-chemical stabilisation and corresponded to kinetic changes in hydrolysis activities. As compared to data of the natural sediment, the biological activity of the formulated sediment showed a different dynamic with lower activity levels. For both sediments, an important decrease of activities levels was observed after 15 days because of a substrate limitation. The work showed that a preliminary conditioning treatment of a formulated sediment provides the stabilisation of parameters that can affect toxicant bioavailability. Additional research is needed to determine the real influence of conditioning on the bioavailability of contaminants. The possible advisability of organic matter input, to maintain the sediment bacterial activity, has to be studied.  相似文献   

17.
Tissue residues of the PAHs, anthracene, fluorene, fluoranthene and pyrene were determined in Lumbriculus variegatus at four time intervals during both a 96-h exposure period to monitor uptake, and a 96-h clean water period to assess depuration. Mean BCFs were 2390, 1210, 452 and 1920 for fluoranthene, anthracene, fluorene and pyrene, respectively. BCFs were positively correlated with the octanol/water partition coefficient values of the four PAHs. Depuration occurred most rapidly for fluorene, followed by anthracene and fluoranthene. No apparent depuration of pyrene was observed during the 96-h depuration period. Because of rapid depuration of some PAHs, it appears that the 24 h clean water gut clearance period recommended in conjunction with sediment bioaccumulation tests with L. variegatus has potential to result in an under-estimation of bioaccumulation of some chemicals.  相似文献   

18.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

19.
Long-term accumulation of creosote wastes at a wood-preserving facility near Pensacola, Florida, has produced high levels of organic contamination of groundwaters near Pensacola Bay. Impacts of this contamination on the nearshore environment of the bay were examined by analysis of water, sediment and tissues of two mollusc species. One of the species (Thais haemastoma) was native to the study area. Individuals of the other test species (Crassostrea virginica) were placed in cages at the test sites for a 6-week period. Contamination at the nearshore estuarine sites was assessed by comparison to a control site in an uncontaminated area of the bay, as well as a small stream which forms a direct surface-water link between the creosote storage ponds and the bay. The study focused on polycyclic aromatic hydrocarbons (PAH), the primary components of creosote. Very little PAH in water or in the surface layer of estuarine sediments was detected, despite heavy pollution of the stream sediments. This is attributed to various degradation processes which attack the PAH compounds once they discharge into the estuary, and to the likelihood of intermittent and localised release of contaminants to the estuary. Examination of sediment cores and mollusc tissues, which provide a record integrated over time and space, revealed some accumulation of a few PAH, notably fluoranthene, pyrene, benzo(a)anthracene, chrysene and phenanthrene. In the sediments, the highest concentrations of these compounds appeared below the surface, within a depth range of 8-13 cm. Bioaccumulation of fluoranthene, pyrene and phenanthrene in both mollusc species was up to ten times greater at test sites than at the control site. This contrasts with naphthalene, the bioaccumulation of which was no greater at test sites than at the control site. These differences in bioaccumulation factors relate to structural chemistry of the compounds which control their solubility, bioavailability, susceptibility to degradation and capacity for depuration by the organism.  相似文献   

20.
Sediment cores from Richard Lake near Sudbury, Ontario, were sectioned and analyzed for total metal content, plus metal bioavailability and toxicity to Hyalella azteca (after equilibration with oxygenated overlying water). Strong and similar sediment profiles were observed for Cd, Co, Cu and Ni in the sediment. However, these differed from metal bioavailability profiles (bioaccumulation by Hyalella and metals in overlying water). Bioavailability profiles for Cu also differed from those for Cd, Co or Ni. The deepest sediment layers, deposited prior to industrial development, were non-toxic. Sediment toxicity was attributed to Ni dissolution into overlying water. Moreover, differential bioavailability of Ni in surface and deeper sediment layers was observed. This can affect the interpretation of toxicity data for sediments collected by different methods (e.g. core vs. grab samples). Based on Pb-210 dating and trends in Ni in the core, chronic toxicity of surface sediments from Richard Lake might approach non-toxic levels in about 15 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号