首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987–1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been added bi-monthly since 1989 to the West Bear catchment at 1800 eq ha-1 a-1; the East Bear reference catchment is responding to ambient conditions. Initially, the two catchments had nearly identical chemistry (e.g., Ca2+, Mg2+, SO4 2-, and alkalinity ≈82, 32, 100, and 5 μeq L-1, respectively). The manipulated catchment responded initially with increased export of base cations, lower pH and alkalinity, and increased dissolved Al,NO3 - and SO4 2-. Dissolved organic carbon and Si have remained relatively constant. After 7 yr of treatment, the chemical response of runoff switched to declining base cations, with the other analytes continuing their trends; the exports of dissolved and particulate Al, Fe, and P increased substantially as base cations declined. The reference catchment has slowly acidified under ambient conditions, caused by the base cation supply decreasing faster than the decrease of SO4 2, as pollution abates. Export of Al, Fe and, P is mimicking that of the manipulated watershed, but is lower in magnitude and lags in time. Probable increasing SO4 2- adsorption caused by acidification has moderated the longer-term trends of acidification of both watersheds. The trends of decreasing base cations were interrupted by the effects of several short-term events, including severe ice storm damage to the canopy, unusual snow pack conditions, snow melt and rain storms, and episodic input of marine aerosols. These episodic events alter alkalinity by5 to 15 μeq L-1 and make it more difficult to determine recovery from pollution abatement.  相似文献   

7.
8.
9.
10.
Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1 was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.  相似文献   

11.
12.
13.
14.
15.
16.
Ecosystem dynamics in high-elevation watersheds are extremely sensitive to changes in chemical, energy, and water fluxes. Here we report information on yields of dissolved organic C, N, and P for the 1999 snowmelt runoff season from three high-elevation catchments in the Colorado Front Range, U.S.A.: Green Lake 4 (GL4) and Albion townsite (ALB) on North Boulder Creek and the Saddle Stream (SS), a tributary catchment dominated by alpine tundra. Dissolved organic carbon (DOC) concentrations in stream waters ranged from <1 to 10 mg C L-1, with the highest values occurring at the SS site. Dissolved organic nitrogen (DON) concentrations ranged from below detection limits to 0.28 mg N L-1 and were again highest at the tundra-dominatedsite. Dissolved organic phosphorus (DOP) concentrations were at or near detection limits throughout the season in all three catchments indicating a strong terrestrial retention of P. OnlyDOC showed a significant relationship to discharge. Yields of DOC in the three catchments ranged from 10.6 to 11.8 kg C ha-1 while yields of DON and DOP ranged from 0.32 to 0.41 and 0.02 to 0.08 kg ha-1, respectively. The relatively highyield of organic N and P relative to C from the highest elevationsite (GL4) was somewhat surprising and points to either: (1) a source of dissolved organic material (DOM) in the upper reaches of the catchment that is enriched in these nutrients or (2) theselective uptake and processing of organic N and P downstream ofthe sampling site. Additionally, seasonal changes in the relativeimportance of DOM precursor materials appear to result in changesin the N content of DOM at both the GL4 and ALB sites.  相似文献   

17.
18.
It is postulated that the current “garbage crisis” is due to a shortage of disposal capacity, not to burgeoning amounts of municipal solid waste (MSW). In support of this, trends in the quantity and composition of MSW, methods of waste reduction, recycling and growth of waste-to-energy capacity are examined to gain insight as to the future course of MSW management in the U.S. over about the next 15 plus years. This is the likely time to install new disposal capacity if pending legislative proposals are passed, that would enable states that provide their own disposal to ban wastes from other states.A new term, the “intensity of waste generation”, is proposed and illustrated, analogous to the intensity of mineral usage. The intensity is decreasing, implying that it is unlikely that waste generation will grow at rates projected by extrapolation or simple macroeconomic assumptions. Some other conclusions are: per capita MSW generation was nearly statistically constant from 1970 to 1984; the content of most forms of packaging in MSW are decreasing; packaging decreases the amount of food residues in MSW; and proposed national recycling targets of about 25% or more are not likely to be achieved, in part because of changes in the composition of MSW. Coupled with likely shortages of labor to process separated waste, it is forecast that there will be some future time when people will not think source separation is worth the bother and recycling will decrease. The future growth of waste-to-energy capacity is projected by assuming that a city will install capacity when others have done so, which leads to a simple quantitative model. The likely effects of impending landfill and incineration regulations are addressed.  相似文献   

19.
20.
Remediation responsibilities of the U.S. Department of Energy (DOE) encompass a vast national complex of highly contaminated former weapons facilities. During the mid‐1990s, DOE announced its intentions to consolidate some waste types at specific sites. At about the same time, organizations and public officials around DOE sites urged a National Dialogue, designed to develop comprehensive solutions to the Department's needs for waste disposition ( transportation, treatment, and storage). Recent opposition from citizens and elected officials in Nevada and Washington State has presented obstacles to DOE's plans. Additionally, chairs of nine site‐specific advisory boards recommended that DOE support a National Stakeholder Forum, similarly designed to develop solutions to disposition needs. This article reviews the chronology of DOE's disposition efforts, along with public and state reactions and recommendations. © 2006 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号